少样本跨域混合迁移输电线路绝缘子缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

华北电力大学自动化系保定071003

作者简介:

通讯作者:

中图分类号:

TH39

基金项目:

国家自然科学基金青年科学基金(62303184,62403199)、河北省自然科学基金青年科学基金(F2024502006)、中央高校基本科研业务费专项资金(2024MS138,2025MS150)项目资助


Few-shot cross-domain hybrid transfer learning method for transmission
Author:
Affiliation:

Department of Automation, North China Electric Power University, Baoding 071003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    绝缘子缺陷检测是输电线路智能巡检中的重要任务,目前存在图像样本不足的问题,通过生成人工样本进行数据扩增是一种有效的解决办法,但人工样本与真实样本的域特征分布不可避免的存在差异。为了解决此问题,提出了一种少样本跨域混合迁移有监督领域自适应模型,通过将大量有标注的人工图像作为源域,少量的真实图像作为目标域,实现人工样本的有效利用与跨域特征分布的优化对齐,提高少样本情形下绝缘子缺陷检测性能。首先对源域图像进行类目标域分布匹配,并利用其对目标域图像进行前景-背景混合增强,以提升目标域样本的质量和多样性。其次,对源域图像进行跨域混合风格扰动,进一步拉近其与目标域的域特征分布,最后通过基于对抗性训练的域分类器,对齐源域和目标域的跨域不变特征,增强模型在不同域上的泛化能力。该模型在仅使用8张真实绝缘子缺陷图像样本参与训练的情况下,相较于基础检测模型,AP50指标提升了9.3%,且通过消融实验验证了各模块的有效性。此外,该模型在不同绝缘子缺陷数据集上与同类型有监督领域自适应模型的对比下均取得了更高的检测性能,例如,在自建绝缘子缺陷数据集上与同类最优模型相比AP50提高了3.9%,在公共绝缘子缺陷数据集IDID上与同类最优模型相比AP50提高了2.4%。

    Abstract:

    Insulator defect detection is a crucial task in the intelligent inspection of transmission lines. Currently, there is a shortage of image samples, and generating synthetic samples for data augmentation is an effective solution. However, synthetic samples inevitably exhibit domain distribution differences from real samples. To address this issue, a few-shot cross-domain hybrid transfer supervised domain adaptation model is proposed. This approach utilizes a large number of labeled synthetic images as the source domain and a small number of real images as the target domain, enabling effective use of synthetic samples and optimized alignment of cross-domain feature distributions, thereby improving the performance of insulator defect detection under few-shot scenarios. First, source domain images are adapted to match the target-like class distribution and are used to perform foreground-background hybrid augmentation on target domain images, improving the quality and diversity of target samples. Secondly, cross-domain style perturbation is applied to source images to further reduce the domain distribution gap with the target domain. Finally, a domain classifier based on adversarial training is employed to align cross-domain invariant features between the source and target domains, enhancing the model’s generalization ability across domains. Under the condition of using only 8 real insulator defect images for training, the proposed model achieves a 9.0% improvement in AP50 compared to the baseline detection model. Ablation experiments further evaluate the effectiveness of each module. In addition, the proposed model consistently outperforms other supervised domain adaptation approaches across different insulator defect datasets. For instance, it achieves a 3.6% AP50 improvement over the best competing model on a self-constructed insulator defect dataset, and a 2.4% AP50 improvement on the public insulator defect dataset IDID.

    参考文献
    相似文献
    引证文献
引用本文

王亚茹,屈卓,杨春旺,赵顺,张诗吟.少样本跨域混合迁移输电线路绝缘子缺陷检测方法[J].仪器仪表学报,2025,46(8):63-74

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码