基于DQN和圆拟合的机器人手眼标定方法
DOI:
CSTR:
作者:
作者单位:

合肥工业大学电气与自动化工程学院合肥230009

作者简介:

通讯作者:

中图分类号:

TH74

基金项目:


Robot hand-eye calibration method based on DQN and circle fitting
Author:
Affiliation:

School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,随着工业机器人技术的不断发展,机器人搭载激光测距仪实现多姿态测量的应用场景和对手眼标定的需求逐渐增多,对手眼标定技术的精度提出了更高要求,而传统标定方法往往依赖专用标定物或传感器,操作复杂且成本较高。故提出了一种基于深度Q网络(DQN)算法和圆轮廓拟合的机器人手眼标定方法。利用DQN算法控制机器人末端两关节带动激光测距仪运动,使得激光测距仪返回值最小,在此基础上,建立机械臂运动学模型计算得到此时光点的理论坐标值。通过设定关节一的多个角度值,使光点在目标平面形成一个圆轨迹,对实际采集的光点坐标值进行圆拟合,建立等式约束下的优化模型,求解得到手眼标定的参数值。基于MATLAB平台模拟仿真,对该方法的可行性进行了验证,分析了角度参数和位移参数初始值对标定结果的影响和抗激光测距噪声干扰的性能。与其他标定方法进行对比,结果显示该方法具有更高的精度。搭建了实验系统,利用该方法求解标定参数,实验结果表明,标定后的系统扫描实验误差不大于05 mm,满足工业应用的精度要求。该方法无需额外昂贵的标定物,仅依靠激光测距仪的单测量量和几何约束,显著降低了标定成本与操作难度,同时具备良好的抗噪声性能,能实现工业现场高精度标定。

    Abstract:

    In recent years, with the continuous development of the industrial robot technology, the application of robots equipped with laser rangefinders for multipose measurement and the demand for handeye calibration have been increasing, placing higher requirements on calibration accuracy. However, traditional methods often rely on dedicated calibration objects or sensors, which are complex to operate and costly. To address this issue, this paper proposes a robot handeye calibration method based on the deep Qnetwork(DQN) algorithm and circular contour fitting. The DQN algorithm controls the two end joints of the robot to drive the laser rangefinder such that its return value is minimized. On this basis, a kinematic model of the manipulator is established to compute the theoretical coordinates of the light spot. By setting multiple angle values of joint one, the light spot forms a circular trajectory on the target plane. Circular fitting is then applied to the collected light spot coordinates, and an optimization model with equality constraints is constructed to solve for the calibration parameters. MATLAB-based simulations verified the feasibility of the method, analyzing the influence of initial values of angular and displacement parameters on calibration results, as well as robustness against laser ranging noise. Comparative experiments demonstrate that the proposed method achieves higher accuracy than other calibration approaches. An experimental system was also built, and calibration parameters were obtained using the proposed method. Experimental results show that the scanning error of the calibrated system does not exceed 05 mm, meeting the accuracy requirements of industrial applications. The method requires no additional expensive calibration objects, relying only on singlepoint measurements from the laser rangefinder and geometric constraints. It significantly reduces calibration cost and operational complexity while maintaining good noise resistance, making it well suited for highprecision industrial on-site calibration.

    参考文献
    相似文献
    引证文献
引用本文

储昭碧,何沣奕,高金辉,彭乐峰.基于DQN和圆拟合的机器人手眼标定方法[J].仪器仪表学报,2025,46(8):330-340

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码