基于YOLO-MCSL的轻量化智能电能表热缺陷目标检测方法
DOI:
CSTR:
作者:
作者单位:

1.西南大学工程技术学院重庆400716; 2.国网新疆电力有限公司电力科学研究院新疆830046; 3.国网重庆市电力公司北碚供电分公司重庆400014

作者简介:

通讯作者:

中图分类号:

TH183.3TM755TP389

基金项目:

中央高校基本科研业务费项目(SWU-KT22027)资助


A lightweight thermal defect detection method for smart electricity meters based on YOLO-MCSL
Author:
Affiliation:

1.College of Engineering and Technology,Southwest University, Chongqing 400716, China; 2.State Grid Xinjiang Electric Power Research Institute, Xinjiang 830046, China; 3.Beibei Power Supply Branch of State Grid Chongqing Electric Power Company, Chongqing 400014, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对智能电能表及其接线盒热缺陷红外检测中存在的小目标漏检率高、复杂背景干扰严重及现有模型精度与效率难以兼顾等问题,提出了一种基于改进YOLOv8s架构的轻量化智能电能表目标检测算法YOLO-MCSL,旨在满足电力现场巡检对实时检测的迫切需求。首先,将MobileNetV4轻量化网络作为骨干网,显著降低模型参数量与计算开销;其次,引入RT-DETR模型中的CCFF跨尺度特征融合模块,增强对多尺度微小热缺陷的感知能力;随后,设计轻量化C2f_Star模块替代原C2f结构,进一步压缩模型并提升特征提取效率;同时,构建LSCD轻量化共享卷积检测头,通过参数共享机制减少冗余计算;此外,结合Focaler-SIoU损失函数优化边界框回归过程,提升难易样本区分度;最后,应用层自适应幅值剪枝算法对模型进行结构化剪枝,实现性能与轻量化的平衡。基于自建的智能电能表热缺陷红外图像数据集开展实验,结果表明,在3类关键部件:接线盒、电池模块与显示屏的检测中,YOLO-MCSL的检测精度分别达到91.6%、99.2%和99.5%,整体mAP@0.5为97.9%。相比YOLOv8s基准模型,参数量为1.749 M,减少了84.3%,计算量为5.7 GFLOPs,降低了80.2%,模型内存占用为3.8 MB,减少了82.3%。该方法为智能电能表缺陷检测提供了高精度、轻量化、可嵌入部署的解决方案,具备良好的工程应用前景。

    Abstract:

    To address the issues of high miss rates for small targets, severe interference from complex backgrounds, and the inability of existing models to balance accuracy and efficiency in infrared detection of thermal defects in smart electricity meters and their junction boxes, we propose a lightweight smart electricity meter target detection algorithm, YOLO-MCSL, based on an improved YOLOv8s architecture. This algorithm aims to meet the urgent need for real-time detection in power field inspections. First, the MobileNetV4 lightweight network is adopted as the backbone to significantly reduce the number of model parameters and computational overhead. Second, the CCFF cross-scale feature fusion module from the RT-DETR model is introduced to enhance the detection capability for multi-scale small thermal defects. Subsequently, a lightweight C2f_Star module is designed to replace the original C2f structure, further compressing the model and improving feature extraction efficiency. Additionally, we construct the LSCD lightweight shared convolution detection head, which reduces redundant computation through parameter sharing. Furthermore, we combine the Focaler-SIoU loss function to optimize the bounding box regression process, enhancing the differentiation between easy and hard samples. Finally, we apply a layer-wise adaptive amplitude pruning algorithm to structurally prune the model, achieving a balance between performance and lightweight design. Experiments were conducted on a selfconstructed infrared image dataset of thermal defects in smart electricity meters. The results show that in the detection of three key components—junction boxes, battery modules, and displays—the detection accuracy of YOLO-MCSL reached 91.6%, 99.2%, and 99.5%, respectively, with an overall mAP@0.5 of 97.9%. Compared to the YOLOv8s baseline model, the number of parameters was reduced to 1.749 M (a reduction of 84.3 %), computational complexity was reduced to 5.7 GFLOPs (a reduction of 80.2%), and model memory usage was reduced to 3.8 MB (a reduction of 82.3%). This method provides a high-precision, lightweight, and embeddable solution for smart electricity meter defect detection, showing promising prospects for engineering applications.

    参考文献
    相似文献
    引证文献
引用本文

陈方彬,赵仲勇,王建,胡文杰,张开迪.基于YOLO-MCSL的轻量化智能电能表热缺陷目标检测方法[J].仪器仪表学报,2025,46(8):108-119

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码