LIO-SAM改进:自适应降采样与特征筛选优化
DOI:
CSTR:
作者:
作者单位:

南京工程学院工程训练中心应用技术学院南京211167

作者简介:

通讯作者:

中图分类号:

TH701

基金项目:

南京工程学院创新基金重大项目(CKJA202206)、江苏省研究生科研与实践创新计划项目(SJCX24_1291,SJCX24_1297)资助


Improved LIO-SAM: Adaptive downsampling and feature selection optimization
Author:
Affiliation:

Engineering Training Center & School of Applied Technology, Nanjing Institute of Technology, Nanjing 211167, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对激光雷达SLAM算法中的LIO-SAM算法在复杂环境中高度定位精度不足的问题,围绕特征点提取与后端点云匹配两个关键环节提出改进策略。在后端匹配方面,鉴于其存在的帧间误差波动大、鲁棒性差的情况,创新性地提出一种基于前置匹配的自适应降采样方法。该方法借助预匹配操作,有效提升初始匹配精度,并依据点云局部密度,动态调整体素滤波分辨率,从而在保证匹配精度的同时显著提升计算效率。在前端特征点提取环节,针对LIO-SAM 中曲率计算冗余、排序开销大以及近处点云特征提取率低问题,提出一种结合早期截断(Early Cutoff)与多尺度体素空间协方差分析的双阶段特征筛选机制。该机制主要针对近处点云,首先通过局部几何变化阈值快速剔除冗余点,随后在多尺度体素网格中进行协方差特征分析,从中筛选出空间分布均衡、几何结构稳定的代表性特征点,远处点云采用原算法提取。在公开数据集 KITTI 中选取表现稳定的序列 07 进行对比实验证明,优化后的算法在X、Y轴精度少有提升情况下,Z轴的平均绝对误差下降了 26.44%,RMSE下降了 24.43%,标准差下降了 30.24%,且已在实车平台上完成部署验证,具备良好的鲁棒性与工程适用性。

    Abstract:

    Aiming at the problem that the LIO-SAM algorithm in the SLAM algorithm of LiDAR lacks sufficient localization accuracy in complex environments, this paper proposes an improvement strategy focusing on two key aspects, feature point extraction and back-end point cloud matching. In the back-end matching, in view of its large inter-frame error fluctuation and poor robustness, this paper innovatively proposes an adaptive downsampling method based on pre-matching. The method effectively improves the initial matching accuracy through pre-matching operation, and dynamically adjusts the voxel filtering resolution based on the local density of the point cloud. Thus, the computational efficiency is significantly improved while ensuring the matching accuracy. In the front-end feature extraction, a two-stage feature filtering mechanism combining Early Cutoff and multi-scale voxel spatial covariance analysis is proposed to address the problems of redundant curvature computation, large sorting overhead, and low feature extraction rate of the near point cloud in LIO-SAM. The mechanism mainly focuses on the near point cloud: the redundant points are quickly eliminated by the local geometric change threshold, after which the covariance feature analysis is performed in the multiscale voxel grid. From this, the representative feature points with a balanced spatial distribution and a stable geometric structure are screened out, and the far point cloud is extracted by the original algorithm. Comparison experiments are carried out on the public dataset KITTI by selecting the stable sequence 07. Results show that, while the optimized algorithm provides only slight improvements in X- and Y-axis accuracy, it reduces the average absolute error of Z-axis by 26.44%, the RMSE by 24.43%, and the standard deviation by 30.24%. Furthermore, the algorithm has been deployed on a real-vehicle platform, where its robustness and engineering applicability have been verified.

    参考文献
    相似文献
    引证文献
引用本文

曾宪阳,于浩,梁远生,杨红莉. LIO-SAM改进:自适应降采样与特征筛选优化[J].仪器仪表学报,2025,46(7):288-296

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码