MEMS气体传感器:光学型集成困境与突破性进展
DOI:
CSTR:
作者:
作者单位:

1.天津大学精密仪器与光电子工程学院天津300072; 2.北京信息科技大学仪器科学与光电工程学院北京100192

作者简介:

通讯作者:

中图分类号:

TH741

基金项目:


MEMS gas sensors: Integration bottlenecks and breakthroughs in optical sensing technologies
Author:
Affiliation:

1.School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China; 2.School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    微机电系统(micro electro mechanical systems, MEMS)气体传感器凭借其微型化、低功耗和可批量生产等核心优势,已成为满足“碳达峰、碳中和”国家战略,以及在环境监测、工业安全和医疗诊断等领域实现分布式、实时监测的关键组件。在化学型、物理型和光学型三大类MEMS气体传感器中,光学型传感器凭借其非接触、高选择性及抗电磁干扰等固有优势,在易燃易爆、强腐蚀性气体或痕量分析等特定应用场景中展现出不可替代的价值,是突破化学型和物理型传感器在选择性、响应时间和寿命方面固有局限的重要发展方向。故系统综述了主流MEMS气体传感器的传感原理与技术路线,重点聚焦光学型气体传感器在MEMS集成化进程中面临的核心技术瓶颈,具体体现在3个关键部件的微型化与协同集成,包括高效稳定的微型化光源、长有效光程的微型化气室以及高灵敏度低噪声的集成化探测器。基于详尽的文献调研,新材料的开发与应用、先进微纳制造与结构设计以及系统集成与智能算法融合是当前光学MEMS传感器集成困境的重要方向,并对光学MEMS气体传感器向多功能集成、智能化网络化发展的趋势进行了展望,旨在为相关领域的研究提供系统性参考,助力实现真正意义上的“芯片实验室”型智能传感系统。

    Abstract:

    Micro-electro-mechanical systems (MEMS) gas sensors have emerged as pivotal components for meeting the national strategy of “carbon peak and carbon neutrality,” as well as for achieving distributed, real-time monitoring in fields such as environmental monitoring, industrial safety, and medical diagnostics, due to their core advantages of miniaturization, low power consumption, and mass production. Among the three main categories—chemical, physical, and optical—optical MEMS gas sensors have shown irreplaceable value in specific applications such as detecting flammable, explosive, or highly corrosive gases, as well as trace analysis. Their inherent advantages, such as non-contact, high selectivity, and anti-electromagnetic interference, make them an important development direction for overcoming the limitations of chemical and physical sensors in terms of selectivity, response time, and lifetime. This review systematically summarizes the sensing principles and technical approaches of mainstream MEMS gas sensors, focusing on the core technical bottlenecks faced during the MEMS integration of optical gas sensors. These challenges are specifically reflected in the miniaturization and synergistic integration of three key components: developing efficient and stable miniaturized light sources, miniaturized gas chambers with long effective optical paths, and highly sensitive, low-noise integrated detectors. Based on an extensive literature research, the development and application of new materials, advanced micro-nano manufacturing and structural design, and the fusion of system integration with intelligent algorithms are important directions to break through the current integration challenges of optical MEMS sensors. Furthermore, this study highlights future trends in optical MEMS gas sensors, particularly their progression toward multifunctional integration and intelligent networking, aiming to provide a systematic reference for related research and to help realize a true “lab-on-a-chip” type intelligent sensing system.

    参考文献
    相似文献
    引证文献
引用本文

赵泽宇,王子伦,尤睿,段学欣. MEMS气体传感器:光学型集成困境与突破性进展[J].仪器仪表学报,2025,46(7):21-40

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码