DOI: 10. 19650/j. cnki. cjsi. J2209811

使用多尺度递归图和视觉转换器的心律失常分类

韩 亮^{1,2},罗统军¹,蒲秀娟^{1,2},刘浩伟¹

(1. 重庆大学微电子与通信工程学院 重庆 400044; 2. 生物感知与智能信息处理重庆市重点实验室 重庆 400044)

摘 要:心电(ECG)信号反映心脏电生理活动状态,其准确分类对于心脏疾病的自动诊断非常重要,为此,提出一种使用多尺度 递归图和视觉转换器的心律失常自动分类方法。首先使用小波变换将心电信号分解为低频分量和若干个高频分量,并采用递 归图方法将其分别变换为二维纹理图像;然后针对样本不平衡问题,采用多分类 Focal loss 替代交叉熵损失函数,对视觉转换器 模型进行改进;最后基于心电信号的多尺度递归图表示,使用改进的视觉转换器进行心律失常分类。采用 MIT-BIH 心律失常 数据库中的数据进行实验,所提出的心律失常分类方法的平均准确率为 97.38%。实验结果表明,提出的方法能有效识别心律 失常类型,且其性能明显优于传统的心律失常自动分类方法。

关键词:心律失常;多尺度;递归图;视觉转换器;多分类 Focal loss 中图分类号:TP391 TH701 文献标识码:A 国家标准学科分类代码:510.4010

Arrhythmia classification using multi-scale recurrence plot and vision transformer

Han Liang^{1,2}, Luo Tongjun¹, Pu Xiujuan^{1,2}, Liu Haowei¹

(1. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China;
2. Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing 400044, China)

Abstract: The electrocardiogram (ECG) reflects the cardiac electrophysiological activity, which is essential for the automatic diagnosis of heart disease. In this article, an automatic classification method of arrhythmia using multi-scale recurrence plot and vision transformer is proposed. Firstly, the ECG is decomposed into low-frequency components and several high-frequency components using wavelet transform, which are respectively transformed into 2D texture image by the recurrence plot method. To solve the problem of sample imbalance, the conventional vision transformer is improved by replacing cross entropy loss with multi-classification focal loss. Finally, the arrhythmia classification is performed by utilizing the multi-scale recurrence plot representation of ECG and the improved vision transformer. The MIT-BIH arrhythmia dataset is utilized to evaluate the proposed arrhythmia classification method. The average accuracy of the proposed method is 97.38%. Experiment results show that the proposed method is effective and better than other conventional method.

Keywords: arrhythmia; multi-scale; recurrence plot; vision transformer; multi-classification Focal loss

0 引 言

心血管疾病是影响人类生命健康的最主要的疾病之一,根据世界卫生组织报告,心血管疾病被列在导致死亡的疾病中的第一位^[1]。心律失常是心血管疾病中最常见的一种病况。心电(electrocardiogram, ECG)信号反映心脏健康状况的重要信息,是诊断心律失常的重要手段^[2]。

收稿日期:2022-05-18 Received Date: 2022-05-18

目前,心律失常的临床诊断主要由专业医生对心电信号 进行人工分析,需消耗大量时间和精力,且对医生专业知 识和临床经验要求较高。利用心电信号进行心律失常自 动分类能提供可靠的诊断依据,降低医生工作强度,对心 血管疾病防治具有重要意义。

传统的心律失常自动分类方法主要包括特征提取和 分类模型两个重要组成部分。通常一个完整心跳周期包 括 P 波、QRS 波和 T 波,其常见特征包括形态学特征、时频 域特征、统计特征、变换域特征等。目前,频域分析、时频 分析、心跳间隔分析、形态学和统计学等传统信号处理方 法已被成功地应用于心电信号特征提取^[3]。利用获取的心 电信号特征,目前有多种基于传统机器学习方法的心电信号 分类模型有效地实现了心律失常自动分类,如人工神经网 络、线性判别分析、K 最邻近(K-nearest neighbor,KNN)、支持 向量机(support vector machine, SVM)等^[4]。

上述传统的心律失常自动分类方法具有较低的时间 复杂度,且所获取的特征具有较好的可解释性和明确的 生理学意义。但是,上述方法需从心电信号中手工提取 特征,存在一定局限性。深度学习具有从原始心电信号 中自学习有用特征的能力,基于深度学习的心律失常自 动分类已成为当前研究热点,一维卷积神经网络 (1D-convolutional neural networks,1D-CNN)^[5]、残差网络 (1D-convolutional neural networks,1D-CNN)^[5]、残差网络 (residual network, ResNet)^[6]、长短期记忆网络(long short-term memory, LSTM)^[7]等一维深度学习方法已被成 功地应用于心律失常自动分类。此外,多种深度网络相 结合的方法,如1D-CNN 结合 LSTM^[8]、1D-CNN 结合双 向循环神经网络(recurrent neural network, RNN)^[9]等, 也取得了较好的心律失常分类结果。

将一维时间序列编码为二维图像,能更好地反映原 始一维时间序列中潜在的特征和模式,进而结合计算机 视觉技术实现一维时间序列分类,其分类性能明显优于 传统的一维时间序列分类方法^[10]。目前,使用一维时间 序列的频谱图结合二维卷积神经网络(2D-convolutional neural networks, 2D-CNN)的方法已成功实现心律失常分 类^[11]。递归图(recurrence plot, RP)将动力系统产生的 时间序列信号转化为二维图像来对动力系统进行描述, 更适用于心电信号的二维表示,已被成功地应用于心律 失常分类^[12]。多分辨率分析方法能更好地表征原始信 号,已在各个领域得到了广泛应用。视觉转换器(vision transformer, ViT)基于注意力机制,具有计算效率高、扩 展性强的特点^[13]。

为此,本文将小波变换与递归图相结合,构建多尺度 递归图方法,实现对一维时间序列的二维多分辨率表示。 进而采用 ViT 构建深度分类模型,直接从心电信号的多 尺度递归图中提取特征并进行分类。此外,采用多分类 Focal loss^[14]代替交叉熵损失函数,改进 ViT 深度分类模 型,提升分类模型对于样本数量较少的心拍类型的准 确率。

1 多尺度递归图

递归图^[15]将动力系统产生的时间序列信号转化为 二维图像来对动力系统进行描述,是分析时间序列周期 性、混沌性以及非平稳性的一个重要方法。递归图分析 能够将时间序列内部结构可视化,给出有关相似性、信息 量和预测性的先验知识。递归图的纹理特征能表征序列 时域信息,反映时间序列的平稳性。时间序列越平稳,其 递归图的纹理分布越均匀;反之,时间序列越无序,其递 归图的纹理细节越显著。因此,利用递归图的特点可有 效分析不同类型的心电信号。

多分辨率分析^[16]将一个函数表示为一个低频成分 和不同分辨率下的高频成分。小波变换是实现多分辨率 分析的强有力的工具,已在图像压缩、信号处理和图像处 理等领域得到了广泛的应用。采用多分辨率分析方法能 更好地表征原始信号,为此,本论文将多分辨分析方法与 递归图结合起来,构建多尺度递归图分析方法,首先采用 小波变换对心电信号进行分解,得到一个低频分量和若 干个高频分量,然后对低频分量和高频分量分别采用递 归图方法生成心电信号的多尺度递归图。一个两级小波 变换的多尺度递归图分析方法如图1所示。

图 1 两级小波变换的多尺度递归图分析方法 Fig. 1 The multi-scale recurrence plot method by wavelet transform with two levels

2 基于多分类 Focal loss 的视觉转换器

视觉转换器^[13]基于注意力架构,与卷积神经网络相 比具有更好的性能。ViT 首先将输入图像分割成为一个 包含 m 个图像块的序列,然后将图像块序列展开为二维 矩阵,再使用可训练层将该矩阵线性映射成为一个 D 维 嵌入表示。经过嵌入表示后的图像序列被送入 ViT 的变 换编码器(transformer encoder, TE)中,TE 使用多头注意 力机制,能更好地关注输入图像中重要性程度高的特征, 从而提升其性能。最后将 TE 提取得到的特征向量输入 到多层感知机模块,进行图像分类。 在心电信号数据库中,正常心拍信号的比例较大,而 异常心拍信号的比例较小,存在严重的样本不平衡问题。 Focal loss^[14]通过输出概率和调制系数来降低数量比较 多的易分类样本(输出概率较高的样本)在训练中的权 重,从而使得模型更加关注数量较少的类。多分类 Focal loss 定义如下:

$$FL_{loss} = -\sum_{t=1}^{N} \alpha_t (1 - p_t)^{\gamma} \log p_t \tag{1}$$

式中: p_i 表示输出概率; α_i 表示根据样本类别数量确定的 权重; γ 为衰减参数,用于确定调制系数(1 – p_i)^{γ}的大 小;N表示类别数量。

本文采用多分类 Focal loss 代替交叉熵损失函数,对 传统 ViT 模型进行改进,以解决样本不平衡问题。

3 使用多尺度递归图和视觉转换器的心律 失常分类方法

一个完整的心拍波形由当前 P 波起始至下一个 P 波 起始。当出现心律失常时,心拍波形会发生相应的变化。 因此,通过心拍波形变化可以有效地识别心律失常类型。 本文将小波变换、递归图分析和视觉转换器结合起来,提 出一种使用多尺度递归图和视觉转换器的心律失常分类 方法,如图 2 所示。

本文提出的心律失常分类方法的具体步骤如下。 1)心拍信号的多尺度递归图表示

采用第1节提出的多尺度递归图方法,首先使用小 波变换将获取的心拍信号分解为低频分量和若干个高频 分量。然后使用递归图方法将小波分解得到的低频分量 和若干个高频分量分别转换为递归图表示。设小波分解 级数为n,即可得到一个心拍信号的低频分量的递归图 表示 ECG_{A-RP} 和n个高频分量的递归图表示 $ECG_{Di-RP}(i=1,2,...,n)。$

然后按照 $ECG_{D1-RP}, ECG_{D2-RP}, \dots, ECG_{Dn-RP}$ 和 ECG_{A-RP} 的顺序将其拼接为一个尺寸为 $(n + 1) \times m \times m$ 的三维矩阵,其中 n 为小波分解级数, m × m 为心拍信号的递归图的尺寸。

2) 基于改进的视觉转换器的心拍分类

以步骤 1)得到的心拍信号的多尺度递归图为输入数据,使用第2节的基于多分类 Focal Loss 的视觉转换器进行分类识别,实现心律失常自动分类。

4 实验结果与分析

4.1 实验数据

本文实验数据来源于 MIT-BIH^[17]心律失常数据库, 该数据库包含48条记录,每条记录均包含两路不同导联 方式的心电信号,其采样频率为360Hz,采集时间长度为 1800s。MIT-BIH心律失常数据库中的心电数据均有详 细的心拍类型的标注。去除数据库中4条来源于使用心 脏起搏器患者的记录,本文最终选择44条记录进行实 验。对于每一条记录,本文选择样本最多的 ML II 型 ECG 信号进行实验。

按照美国医疗仪器促进协会制定的 AAMI 标准^[18], 结合数据库中心电数据的标注信息,将心拍划分为 5 种 类型,正常心拍(N)、室上性异位心拍(S)、室性异位心 拍(V)、融合心拍(F)和未知心拍(Q)。对每种心拍类 型,均按照 7:3的比例划分训练集和测试集,最终的实验 数据统计信息如表 1 所示。

不	τι MIII-I	BIH 致插件头	: 短蚁垢
Table 1	Experimen	nt data in MI'	Г-BIH database

AAMI classes	训练集	测试集	合计
Ν	28 013	11 987	40 000
S	1 948	829	2 777
V	5 089	2 137	7 226
F	550	252	802
Q	5 585	2 446	8 031
合计	41 185	17 651	58 836

4.2 性能评价方法

对于类别 i, TP_i 表示属于类别 i 且被正确分类为类 别 i 的频次, FN_i 表示属于类别 i 但是被错误分类为其他 类别的频次, FP_i 表示不属于类别 i 但是被错误分类为类 别 i 的频次。本文采用精确率(precision, PRE)、召回率 (recall, REC)和 F_1 分数评价分类算法在每一种心拍类 型上的分类性能。对于类别 i, 其精确率 PRE_i 、召回率 REC_i 和 F_1 分数 F_{1i} 定义如下:

$$PRE_i = \frac{TP_i}{TP_i + FP_i} \times 100\%$$
⁽²⁾

$$REC_i = \frac{TP_i}{TP_i + FN_i} \times 100\%$$
(3)

$$F_{1i} = \frac{2 \times PRE_i \times REC_i}{REC_i + PRE_i} \times 100\%$$
(4)

对于分类算法的整体性能,本文采用准确率(accuracy, ACC)、精确率的算术宏平均值 PRE_M 、召回率的算术宏平均值 REC_M 和 F_1 分数的算术宏平均值 F_{1M} 进行评价,其具体定义如下:

$$ACC = \frac{\sum_{i=1}^{n} TP_{i}}{\sum_{i=1}^{n} TP_{i} + \sum_{i=1}^{n} FN_{i}} \times 100\%$$
(5)

$$PRE_{M} = \frac{1}{n} \sum_{i=1}^{n} PRE_{i}$$
(6)

$$REC_{M} = \frac{1}{n} \sum_{i=1}^{n} REC_{i}$$
⁽⁷⁾

$$F_{1M} = \frac{1}{n} \sum_{i=1}^{n} F_{1i}$$
(8)

4.3 本文方法实验结果与分析

本文使用基于 Python 的深度学习框架 Tensorflow 完成 ViT 模型的构建和训练,所有的实验均在具有 Intel (R) Xeon(R) CPU E5-4650 v3 @ 2.10 GHz CPU 处理器、NVIDIA GeForce GTX 1070Ti 显卡和 32 G 运行内存的计算机上进行,训练部分采用 GPU 加速。本文采用阈值递归图方法^[15]实现心电信号的递归图表示,阈值 *ε* 为向量最大距离的 0.2。本文所构建的 ViT 模型网络结构参数如表 2 所示,其训练参数如表 3 所示。

表 2 视觉转换器网络模型参数 Table 2 The model parameters of ViT

节点数
8
4
64
[128,64]
[2 048,1 024]
5

1) 小波基选择与小波分解级数优化

使用小波变换对心电信号进行处理时,不同的小波 基以及不同的分解级数得到的结果各不相同。本文通过 实验探讨了不同小波基和不同小波分解级数对心律失常 分类实验结果的影响。按照第3节提出的分类算法,使 用表2和3中的ViT的网络模型参数和训练参数,选取 常用的双正交小波"bior4.4"、Symlets 小波函数族中的 "sym6"和 Daubechies 小波函数族中的"db6"3种小波基

表 3 视觉转换器训练参数

 Table 3
 The parameters in training process of ViT

参数	值
Batch size	256
Patch_size	6
Epochs	250
学习率	0.000 1
Adam 优化器参数: β_1	0.9
Adam 优化器参数: β_2	0. 999
Adam 优化器参数: ϵ	10^{-7}
权重初始化方法	' Kaiming-N'
验证集划分比例	0. 1
早停参数:最大连续无进步训练轮数	10

进行实验,分解级数为1~4级,采用第4.2节所述性能 评价方法进行性能评价,实验结果如表4所示。

表 4 不同小波基与小波分解级数的实验结果

 Table 4
 Experiment results on different wavelet bases and wavelet decomposition levels

小波基	分解级数	$PRE_M / \%$	REC _M /%	$F_{1M}/\%$	ACC/%
	1	94.11	89.74	90. 80	96.45
1. 4.4	2	95.77	91.67	93.61	97.38
bior4. 4	3	95.16	91.15	92.46	97.14
	4	91.02	84.01	88.23	94.52
	1	93.94	91.26	92.48	97.09
6	2	94. 29	90.26	92.07	97.14
sym6	3	93.22	89.16	91.17	96.26
	4	92.78	89.45	90.12	96.02
	1	94. 82	90.36	92.34	96.98
db6	2	95.02	91.42	93.04	97.08
	3	92.49	89.68	90. 98	96.32
	4	92.02	89.21	89.56	95.12

由表4可知,随着小波分解级数的增加,本文提出的 心律失常分类方法的性能呈先上升后下降的趋势;且在 相同小波分解级数下,小波基不同,本文提出的方法的性 能也不同。其中,小波基为 bior4.4 且其分解级数为 2 时,心律失常分类的准确率、精确率、召回率和 F₁分数的 宏平均值最高。

两种类型的心拍经小波变换后的多尺度递归图示例 如图 3 所示,小波基选择为 bior4.4,小波分解级数为 2。 由图 3 可知,不同类型心拍的多尺度递归图在低频分量 和高频分量上的纹理均存在较为明显的区别。因此,采 用深度学习方法从心拍信号的多尺度递归图中提取图像 纹理特征并进行分类是可行的。

图 3 两种心拍类型多尺度递归图

2) 损失函数对比实验

MIT-BIH 心律失常数据库中的 N 类别数量明显要多 于其他 4 类,这样的不平衡数据集会使得分类模型受 N 类别影响比较大。按照第 3 节提出的分类算法,使用 bior4.4小波基,小波分解级数为 2,ViT 模型的损失函数 分别采用传统的交叉熵损失函数和多分类 Focal loss,采 用第 4.2 节所述性能评价方法进行性能评价,实验结果 如表 5 所示。

由表 5 可知,对于样本数量较多的类型 N,改进后的 ViT 模型的分类性能略有提高,其中正确分类的心拍数 量提高了 0.24%,精确率提高了 1.17%,召回率提高了 0.23%, F₁分数提高了 0.71%。改进后的 ViT 模型对于 样本数据较少的 4 种异常心拍类型 S、V、F、Q 的分类性 能均有明显提高,其正确分类的心拍数量平均提高了 3.67%,精确率平均提高了 1.53%,召回率平均提高了 4.64%, F₁分数平均提高了 3.22%。与较多样本的类型 N 相比,对少样本的 S、V、F、Q 这 4 种心拍类型的分类性 能提高得更为明显。总体来说,采用多分类 Focal loss 代 替传统的交叉熵损失函数,改进后的 ViT 模型对不同心 拍类型的分类性能均有不同程度的提高,其准确率提高 了 1.35%,精确率的算术宏平均值 PRE_M提高了 1.45%,

Table 5 Experiment results on different loss functions

					%
损失函数	类别	PRE	REC	F_1	ACC
	Ν	96. 74	99.01	97.86	
	s	91.83	75.99	83.16	
Cross	V	93.64	91.76	92.96	06.02
Entropy Loss	F	93.42	78.96	85. 59	96.03
	Q	95.94	93.78	94.85	
	MAvA	94.32	87.90	90. 83	
	Ν	97. 91	99. 24	98. 57	
多分类 Focal loss	S	92.07	85. 52	88.68	
	V	96.66	93. 54	95.07	07 29
	F	95.02	82.93	88. 55	97.38
	Q	97.21	97.09	97.15	
	MAvA	95.77	91.67	93.61	

REC 的算术宏平均值 *REC_M* 提高了 3.77%, *F*₁分数的算 术宏平均值 *F*_{1M} 提高了 2.78%。

因此,本文使用多分类 Focal loss 代替传统的交叉熵 损失函数,能有效提高模型对于不同心拍类型、尤其是样 本数量比较少的异常心拍类型的识别能力,更适用于心 律失常分类。

4.4 对比实验结果与分析

为进一步验证本文提出的使用多尺度递归图和视觉 转换器的心律失常分类方法,针对 MIT-BIH 心律失常数 据库中的 44 条记录分别进行如下对比实验。

方法 1,分别使用 SVM^[4],1D-CNN^[5]和 LSTM^[7]直接 对一维心拍信号进行分类。

方法 2,使用短时傅里叶变换(STFT)^[11]计算得到一 维心拍信号的时频谱,然后分别使用 2D-CNN^[11]和本文 改进的基于多分类 Focal loss 的视觉转换器进行分类。

方法 3,按照第 3 节的步骤 1)得到心拍信号的多尺 度递归图,分别使用 2D-CNN^[11]和本文改进的基于多分 类 Focal loss 的视觉转换器进行分类。

采用第4.2节所述性能评价方法进行性能评价,实验结果如表6所示。

由表 6 可知,将心拍信号转换为递归图,再使用改进的 ViT 进行分类,其性能要优于使用 2D-CNN 进行分类的方法,也优于将心拍信号转换为 STFT 时频图再分别使用 2D-CNN 和改进的 ViT 进行分类的方法。相对于 SVM、1D-CNN 和 LSTM 这 3 种一维机器学习方法,采用 本文提出的方法在准确率、精确率的算术宏平均值 PRE_M、召回率的算术宏平均值 REC_M和 F₁分数的算术宏

表 6 心电信号分类方法性能对比 Table 6 Performance comparison of ECG classification

	methods				%
方法	类别	PRE	REC	F_1	ACC
	Ν	92.71	99.64	96.05	
	s	99.09	95.63	97.33	
CUM	V	89. 51	71.23	79.34	02.24
SVM	F	95.09	38.95	55.27	93.34
	Q	97.98	87.18	92.27	
	MAvA	94.88	78.53	84.05	
	Ν	96.56	98.88	97.71	
	s	99.36	97.50	98.42	
1D CMM	V	89.06	80. 95	84.78	05 70
ID-CNN	F	78.45	57.02	66.04	95.72
	Q	97.09	96.94	97.01	
	MAvA	92.10	86.25	88.79	
	Ν	98.09	98.80	98.44	
	s	90. 98	80. 33	85.32	
LCOM	V	91.83	94.24	93.02	06.01
LSIM	F	86.48	76.19	81.01	96. 21
	Q	96.68	96.03	96.34	
	MAvA	92.81	89.12	90.83	
	Ν	98.53	98.85	98.69	
	S	95.01	80. 21	86.98	
STFT+2D-	V	90.66	95.92	93.22	07 11
CNN	F	83.46	82.14	82.81	97.11
	Q	99.46	98.24	98.84	
	MAvA	93.42	91.07	92.11	
	Ν	98.47	98.86	98.66	
	S	86.38	86.48	86.43	
STFT+改	V	94.26	93.77	94.01	07 05
进 ViT	F	89.47	74.20	81.12	97.03
	Q	98.98	99.18	99.08	
	MAvA	93. 51	90.50	91.86	
	Ν	96.52	98.44	97.47	
	\mathbf{S}	79.20	84.07	81.56	
递归图+	V	95.26	85.72	90.24	05 20
2D-CNN	F	91.62	78.17	84.36	93.29
	Q	95.26	93.78	94. 52	
	MAvA	91.57	88.04	89.63	
	Ν	97.91	99. 24	98. 57	
	s	92.07	85. 52	88.68	
递归图+	V	96.66	93. 54	95.07	07 28
改进 ViT	F	95.02	82.93	88.55	71.30
	Q	97.21	97.09	97.15	
	MAvA	95.77	91.67	93.61	

平均值 F_{1M} 4 个评价指标上明显更优。这说明将一维时间序列编码为二维图像,能更好地反映原始一维时间序列中潜在的特征和模式,更有利于后续分类工作。

为更充分地验证本文提出的使用多尺度递归图和视觉转换器的心律失常分类方法的适用性,进一步针对 QT 数据库^[19]进行对比实验。QT 数据库包含 105 条时长为 15 min 的双导联 ECG 记录,本文选取其中 81 条具有心律失常类型注释的 ECG 记录进行实验,实验数据统计信息如表 7 所示。

表 7 QT 数据库实验数据 Table 7 Experiment data in QT database

AAMI classes	训练集	测试集	合计
Ν	27 789	11 939	39 728
S	773	330	1 103
V	1 113	454	1 567
F	173	77	250
Q	1 496	632	2 128
合计	31 344	13 432	44 776

采用与针对 MIT-BIH 心律失常数据库的相同实验方 法进行对比实验,采用第 4.2 节所述性能评价方法进行 性能评价,实验结果如表 8 所示。

表 8 QT 数据库心电信号分类方法性能对比

 Table 8
 Performance comparison of ECG classification

	methods on QT database				
方法	PRE_M	REC_M	F_{1M}	ACC	
SVM	92.64	81.39	86.01	96.54	
1D-CNN	92.12	81.60	86.71	96.85	
LSTM	93.01	78.72	84.01	96.19	
STFT+2D-CNN	94.34	85.87	90.33	98.42	
STFT +改进 ViT	92.84	85.43	88.82	97.98	
递归图+2D-CNN	87.28	88.28	87.61	97.69	
递归图+改进 ViT	93. 51	89.26	91. 22	98.69	

由表 8 可知,将心拍信号转换为递归图,再使用改进的 ViT 进行分类,其性能优于 STFT+2D-CNN、STFT+改进的 ViT、递归图+2D-CNN 3 种二维深度学习方法,也优于 SVM、1D-CNN 和 LSTM 3 种一维机器学习方法。

MIT-BIH 和 QT 数据库均来自国外,为验证本文算法 对国内心电数据库的适用性,使用阿里云天池数据集中 的心跳信号分类预测数据库[20]进行对比实验。该数 据库包含四种心拍类型,本文从中选取 42 546 条数据进 行实验,实验数据统计信息如表 9 所示。

表 9	▶ 心跳信号分类预测数据库实验数据
Fable 9	Experiment data in heartbeat classification

	%		
classes	训练集	测试集	合计
类别'0'	15 025	6 285	21 310
类别'1'	2 382	1 180	3 562
类别'2'	6 281	2 661	8 942
类别'3'	6 094	2 638	8 732
合计	29 782	12 764	42 546

采用与针对 MIT-BIH 心律失常数据库的相同实验方 法进行对比实验,采用第 4.2 节所述性能评价方法进行 性能评价,实验结果如表 10 所示。

表 10 心跳信号分类预测数据库心电信号分类 方法性能对比

Table 10Performance comparison of ECG classificationmethods on heartbeat classification and prediction database

				70
方法	PRE_M	REC_M	F_{1M}	ACC
SVM	94.30	87. 89	90.38	93.25
1D-CNN	92. 85	89.47	90.80	93. 51
LSTM	93.22	86. 82	89.38	92. 58
STFT+2D-CNN	89.75	92.88	90. 99	93.36
STFT +改进 ViT	96. 56	92.34	94.16	96.02
递归图+2D-CNN	96.24	92.04	93.97	95.70
递归图+改进 ViT	95.48	94. 48	94. 93	96. 27

由表 10 可知,针对阿里云天池数据集中的心跳信号 分类预测数据库,将心拍信号转换为递归图,再使用改进 的 ViT 进行分类,其 F₁ 分数的算术宏平均值和准确率最 高,这表明本文提出的方法的分类性能依然最优,同样适 用于国内心电数据库。

综上所述,本文提出的使用多尺度递归图和视觉转换器的心律失常自动检测方法在性能上优于基于 SVM、1D-CNN 和 LSTM 的心电信号分类方法,也优于 STFT+2D-CNN 的心电信号分类方法。

4.5 时间复杂度分析

本文提出的使用多尺度递归图和视觉转换器的心律 失常分类方法将一维心拍信号转换为二维多尺度递归 图,并采用改进的 ViT 进行二维图像特征提取和分类,其 时间复杂度从理论上高于基于一维深度学习的心电信号 分类方法,更高于传统的基于特征提取和机器学习的心 电信号分类方法。

采用已训练好的本文改进的基于多分类 Focal loss 的视觉转换器分类模型,使用表 1 中测试集的 17 651 个 心拍进行测试,其测试总时间为 87 054 ms,平均每个 心拍测试时间为 4.931 9 ms。因为心拍时长为 778 ms, 所以本文提出的方法满足心律失常检测应用的即时性 需求。

5 结 论

心律失常自动分类有助于心血管疾病的诊断和治疗,降低医生的工作量。为此,本文提出一种使用多尺度 递归图和视觉转换器的心律失常自动分类方法,首先采 用递归图方法将一维心电信号时间序列转换为二维多尺 度递归图,然后使用改进的基于多分类 Focal loss 的视觉 转换器进行分类。使用 MIT-BIH 心律失常数据库、QT 数 据库和阿里云天池数据集中的心跳信号分类预测数据库 进行实验,实验结果表明,本文采用的多尺度递归图能更 好地表征心拍信号的特征,且在视觉转换器中采用的多 分类 Focal loss 比传统的交叉熵损失函数更适用于样本 不平衡的心电信号分类任务。本文提出的心律失常自动 分类方法能有效识别心律失常,且其性能明显优于基于 SVM、1D-CNN、LSTM 和 STFT+2D-CNN 的心律失常分类 方法。

本文将一维心电信号时间序列转换为二维多尺度递 归图,然后使用改进的视觉转换器进行分类,只使用了 ECG 信号的单个导联通道,在未来的研究中,可以进一步 研究多导联 ECG 信号和多诊断数据源的心律失常分类, 以提高对不同类型心律失常的识别能力。

参考文献

- JAMES S L, ABATE D, ABATE K H, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the global burden of disease study 2017[J]. Lancet, 2018, 392(10159): 1789-1858.
- [2] 汪毅峰,李江涛,徐峥一,等. 基于电容耦合式电极的非接触式 ECG 采集方法研究[J]. 仪器仪表学报,

2022, 43(2):138-147.

WANG Y F, LI J T, XU ZH Y, et al. A non-contact ECG measurement method based on capacitance coupling electrodes[J]. Chinese Journal of Scientific Instrument, 2022, 43(2):138-147.

- [3] RAJ S, RAY K C. ECG signal analysis using DCT-based DOST and PSO optimized SVM[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66 (3): 470-478.
- [4] REDOUANE L, ZIDELMALA Z, ABDESLAM D O. Optimized time-frequency features and semi-supervised SVM to heartbeat classification [J]. Signal Image and Video Processing, 2020, 14(12):1471-1478.
- [5] HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network [J]. Nature Medicine, 2019, 25(1): 65-69.
- [6] LI Z, ZHOU D, WAN L, et al. Heartbeat classification using deep residual convolutional neural network from 2lead electrocardiogram [J]. Journal of Electrocardiology, 2020, 58: 105-112.
- [7] GAO J, ZHANG H, LU P, et al. An effective LSTM recurrent network to detect arrhythmia on imbalanced ECG dataset [J]. Journal of Healthcare Engineering, 2019, DOI: https://doi.org/10.1155/2019/6320651.
- [8] CHEN C, HUA Z, ZHANG R, et al. Automated arrhythmia classification based on a combination network of CNN and LSTM[J]. Biomedical Signal Processing and Control, 2020, 57: 101819.
- [9] CHEN T M, HUANG C H, SHIH E, et al. Detection and classification of cardiac arrhythmias by a challengebest deep learning neural network model [J]. SSRN Electronic Journal, 2019, 23 (3): 39-49.
- [10] WANG Z, OATES T. Imaging time-series to improve classification and imputation [C]. IJCAI International Joint Conference on Artificial Intelligence, 2015: 3939-3945.
- [11] ULLAH A, ANWAR S M, BILAL M, et al.

Classification of arrhythmia by using deep learning with 2-D ECG spectral image representation [J]. Remote Sensing, 2020, 12(10):1685-1699.

- [12] ZHANG H, LIU C, ZHANG Z, et al. Recurrence plotbased approach for cardiac arrhythmia classification using inception-ResNet-v2[J]. Frontiers in Physiology, 2021, 12: 46-59.
- [13] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16 × 16 words:Transformers for image recognition at scale[J]. Computer Science, 2020, ArXiv: 2010. 11929.
- [14] 彭道刚, 王永坤, 周洋, 等. 基于改进 Faster R-CNN 的电厂雨排口污染物泄漏检测[J]. 电子测量与仪器 学报, 2022, 36(2):40-48.
 PENG D G, WANG Y K, ZHOU Y, et al. Leakage detection of pollutants at rain drain outlet of power plant based on improved Faster R-CNN [J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(2):40-48.
- [15] ECKMANN J P, KAMPHORST S O, RUELLE D. Recurrence plots of dynamical systems [J]. Europhysics Letters, 1987, 4(9): 973-977.
- [16] MALLAT S. A theory for multiresolution signal decomposition: The wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11 (7): 674-693.
- [17] MOODY G B, MARK R G. The impact of the MIT-BIH arrhythmia database[J]. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3): 45-50.
- [18] Association for the advancement of medical instrumentation. ANSI/EC57-2012, testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms [S]. Arlington: Association for the Advancement of Medical Instrumentation, 2012: 1-22.
- [19] LAGUNA P, MARK R G, GOLDBERGER A L, et al. A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG [J]. Computers in Cardiology, 1997, 24:673-676.

[20] 阿里云天池数据集中的心跳信号分类预测数据库 [DB/OL]. https://tianchi. aliyun. com/competition/ entrance/531883/information

作者简介

韩亮(通信作者),分别于 1997 年、2004 年、2008 年于重庆大学获得学士学位、硕士 学位和博士学位,2013 年 7 月~2015 年 7 月 于美国宾夕法尼亚州立大学磁共振研究中 心做访问学者,现为生物感知与智能信息处

理重庆市重点实验室副主任,重庆大学副教授,主要研究方 向为信号处理和图像处理。

E-mail: hanliangaa@ cqu. edu. cn

Han Liang (Corresponding author) received his B. Sc., M. Sc. and Ph. D. degrees all from Chongqing University in 1997, 2004, and 2008, respectively. He worked as a visiting scholar in NMR research center at Penn State University, USA from July 2013 to July 2015. He is currently the vice director of Chongqing Key Lab of Bio-perception & Intelligent Information Processing and an associate professor at Chongqing University. His main research interests include signal processing and image processing.

罗统军,2020年于重庆大学获得学士学 位,现为重庆大学硕士研究生,主要研究方 向为生物医学信号处理。

E-mail:luotongjun@ cqu. edu. cn

Luo Tongjun received his B. Sc. degree

from Chongqing University in 2020. He is currently a M. Sc. candidate at Chongqing University. His main research interests include biomedical signal processing.

蒲秀娟,分别在 2001 年、2005 年、2009 年于重庆大学获得学士学位、硕士学位和博 士学位,2014 年 5 月~2015 年 7 月于美国宾 夕法尼亚州立大学磁共振研究中心做访问 学者,现为重庆大学讲师,主要研究方向为

生物医学信号处理。

E-mail:puxj@ cqu. edu. cn

Pu Xiujuan received her B. Sc., M. Sc. and Ph. D. degrees all from Chongqing University in 2001, 2005, and 2009, respectively. She worked as visiting scholar in NMR research center at Penn State University, USA from May 2014 to July 2015. She is currently a lecturer at Chongqing University. Her main research interests include biomedical signal processing.

刘浩伟,2020年于重庆大学获得学士学 位,现为重庆大学硕士研究生,主要研究方 向为医学信号处理。

E-mail:Liuhaowei@cqu.edu.cn

Liu Haowei received his B. Sc. degree from

Chongqing University in 2020. He is currently a M. Sc. candidate at Chongqing University. His main research interests include biomedical signal processing.