无合作目标测距的回波接收系统设计与分析*

裴 冰1,张福民1,曲兴华1,张 桐1,王俊龙2

(1. 天津大学 精密测试技术及仪器国家重点实验室 天津 300072;2. 国网河北省电力公司 石家庄 050000)

摘 要:对于调频连续波无合作目标测距来说,回波接收系统是其光学系统中重要的组成部分,其接收特性也影响着系统的测 距精度。为对其进行设计与分析,利用光学设计软件对以卡塞格林望远镜与多模光纤为主体的接收系统进行了建模,通过像差 与光接收效率的分析与优化确定系统选用的卡塞格林望远镜的参数。建立待测物后向散射的高斯散射模型,并搭建完整的接 收光路进行实验,定量分析了不同情况下系统的接收功率,并研究了接收效率、聚焦位置等与待测物的距离和表面散射之间的 规律。研究结果表明,对于相同的加工方式的样块,系统接收功率与粗糙度、待测物距离成负相关规律,系统聚焦距离与粗糙 度、待测物距离呈正相关规律。

关键词:无合作目标测距;卡塞格林望远镜;接收效率;表面散射 中图分类号:TH741 文献标识码:A 国家标准学科分类代码:460.40

Design and analysis of echo receiving system in non-cooperative target ranging

Pei Bing¹, Zhang Fumin¹, Qu Xinghua¹, Zhang Tong¹, Wang Junlong²

State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin 300072, China;
 Hebei Electric Power Company, State Grid Corporation, Shijiazhuang 050000, China)

Abstract: Echo receiving system is an important part in the optical system of frequency modulated continuous wave non-cooperative target ranging; and its receiving characteristics have certain influence on the ranging precision of the system. In order to conduct the design and analysis of the system, optical design software was used to conduct the modeling of the receiving system with Cassegrain telescope and multimode fiber as the main body, and the parameters of the Cassegrain telescope were determined through analyzing and optimizing the aberration and optical receiving efficiency. The Gaussian scattering model for the backscattering of the target was established; a complete receiving optical path was built to conduct the experiment; the received power of the system was analyzed quantitatively under different conditions, and the rules between receiving efficiency, focusing position and target distance, surface scattering were investigated. The research results show that for the sample blocks processed with the same method, the system receiving power is negatively correlated with the roughness and target distance, while the system focusing distance is positively correlated with the roughness and target distance. **Keywords**; non-cooperative target ranging; Cassegrain telescope; receiving efficiency; surface scattering

1 引 言

现阶段工业大尺寸精密测量的主要手段是激光测量技术和由此构成的大空间坐标测量仪器^[1]。传统激光跟踪测量方法受技术手段限制,往往不能满足大尺寸工业精密测量的要求,如干涉法需要反射靶镜等作为合作目标接触测量工件,复杂环境下适用性差;脉冲

收稿日期:2016-09 Received Date: 2016-09

法与相位法可以实现无合作目标测量,但测量精度相 对较低^[2]。针对无合作目标、高精度测量的工业需求, 调频连续波测距技术受到了广泛重视,成为近年来国 内外研究热点^[34]。

调频连续波测距技术是一种新型激光测距技术,主要采用了基于马赫-曾德尔(Mach-Zehnder)干涉仪的激光自外差式相干探测技术^[5],理论测量精度为微米量级,同时测量距离远,且无需合作目标,应用前景广阔^[6]。目

^{*}基金项目:国家自然科学基金(51327006,51675380)项目资助

前存在一些关键问题影响了调频连续波无合作目标测距 技术的广泛应用,其中之一在于无合作目标回波信号的 低强度与不确定性对系统测距精度与范围的限制。有合 作目标测距使用了反射棱镜等特定靶标,其回波信号强、 稳定性好,因此测量系统较易实现且精度较高^[7];而无合 作目标的测距中回波信号受待测物的距离、表面后向散 射等的影响变化较大,信号强度弱^[8],严重影响到后续的 信号处理,进而影响测量精度和范围^[9]。

针对上述问题,本文提出了一种基于卡塞格林望 远镜模型、适用于无合作目标测距的回波接收系统,并 进行了设计与定量分析:采用仿真与实验结合的方式, 对接收系统进行了建模与数值分析,得到最优的系统 模型;按照该系统模型搭建试实验平台,通过实验结果 与仿真结果对系统的接收特性与后向散射的影响进行 分析。

2 回波信号接收系统的组成

2.1 卡塞格林望远镜的选用

目前用于无合作目标回波信号接收的光学系统主要 分为折射式和反射式两种类型^[10]。折射式望远镜的优 点是成像效果好,制作比较简单且内部封闭便于保养,缺 点是口径受限,消除色差比较麻烦。而反射式接收望远 镜没有色差,其口径可以做到很大,同口径较折射式成本 低很多,并且采用折叠光路,因此光筒的尺寸可以很小, 广泛应用于激光通信和光谱仪器等领域^[11-12]。而工业测 距系统一般工作距离较远,要求精度高,因此其接收系统 口径要足够大,再加上接收部分机械空间有限,因此镜筒 不能太长,综合上述特点,反射式望远镜系统比较符合其 需求。

反射式望远镜中比较常用的有牛顿系统、卡塞格林系统、格雷戈里系统等。其中典型的卡塞格林望远镜主镜为抛物面,副镜为抛物面或双曲面,主镜的焦点与副镜的焦点重合,从而消除了系统的球差^[13],不足之处在于其副镜会遮挡一部分中间的光线,使收光效率降低。

2.2 接收光路结构

整体接收光路结构如图 1 所示,激光通过液体透镜 准直整形后出射,经矩形反射镜的反射投射至待测物体 表面,在物体表面发生漫反射,漫反射光再通过反射镜被 卡塞格林系统主镜接收,汇聚至副镜后再由副镜聚焦,最 终耦合入多模光纤进入之后的干涉测量系统。此系统设 计简洁,其中发射光路恰好利用了卡塞格林望远镜副镜 造成的接收盲区,不但可以节约空间,还实现了收发光路 的同心。

图 1 接收光路系统结构 Fig. 1 The receiving optical path system structure

3 回波接收系统的仿真建模

目前,国内外光学设计软件在激光测距系统优化中 的应用越来越广泛^[14-15],如 2005 年美国蒙大拿州大学的 Seldomridge N. L.^[16]运用 Zemax 软件对双偏振的激光雷 达接收系统进行辅助的优化设计; 2009 年希腊的 Kokkalis P 等人^[17]也通过仿真软件对拉曼激光雷达接收 系统进行建模,优化了透镜系统。此外,哈尔滨工业大学 也通过 Zemax 对卡塞格林系统建立了耦合模型,分析了 影响耦合效率的因素^[18]。但是他们都没有基于整个完 整的接收系统对回波功率进行定量分析,也没有研究待 测物体后向散射对系统接收效率等特性的影响,而本文 对上述内容进行了更加细致与系统的分析,为接收系统 的优化提供了理论与数据基础。

3.1 卡塞格林系统的建模与设计

根据系统要求设计指标如下:系统总焦距为 300 mm,入瞳直径为60 mm,遮光比小于0.5,光谱范围 为400~1 600 nm。

根据图 2 所示的初始数据在 Zemax 镜头编辑器中进 行编辑,根据测距仪器内腔要求设副镜到聚焦位置的距 离为 120 mm,光源设为平行光,将主副镜的曲率与圆锥 系数设为变量,其中通过在副镜表面的曲率半径上设置 F 数求解类型来控制系统焦距。此步骤采用了 Zemax 的 序列模式,即光线追迹指按照预先给定的顺序从一表面 追迹到另一表面,这些表面排序是根据光线到达先后决 定的,而不是表面实际的摆放位置,因此在本系统的设计 中主镜在副镜之前被编辑,且需要在主镜和副镜之前加 辅助面作为挡光板,以限制进出主镜与次镜的光束。

Fig. 2 Schematic diagram of the Cassegrain system structure

利用 Zemax 默认的评价函数,得到主镜为抛物面,副 镜为圆锥系数为-4 的双曲面的系统,最终镜头数据如 表1 所示。

表1 卡塞格林系统镜头编辑数据

 Table 1
 The optimized lens data of Cassegrain system

面	曲率	厚度/	培面	表面	圆雄玄粉	
	半径/mm	mm	現叫	半高/mm	四田示奴	
物面	+ ∞	无穷大	-	0.000	0.000	
1	+ ∞	25.000	-	30.000	0.000	
2	- 114.098	58.000	-	13.000	0.000	
光阑	- 193. 333	- 58.000	反射镜	29.000	-1.000	
4	- 114.098	58.000	反射镜	13.000	-3.806	
5	- 193. 333	62.000	-	6.226	0.000	
6	+ ∞	0.000	-	8.064×10^{-12}	0.000	
像面	+ ∞	-	-	8.064×10^{-12}	0.000	

在"Wavelength"选项卡中设置系统波长为 450 nm 和1550 nm,在"General"选项卡中设置系统入瞳直径为 60 mm。其中3和4分别表示主镜和副镜,2、5 面为上文 提到的辅助面,1 面为镜筒形成的入瞳光阑。从像面数 据可以看出此时像面光斑很小。查看系统的光线扇面 图、光程差图,可以看出主副镜都为非球面镜的情况下系 统的光线像差与光程差几乎为0,有较好的成像质量。

考虑到实际制作工艺与成本,最终采用的卡塞格林 系统规格如表2所示。

表 2 最终卡塞格林系统参数 Table 2 Final parameters of the Cassegrain system

	曲率半径/ mm	圆锥系数	厚度/ mm	直径/ mm	距离⁄ mm
主镜	200	- 1	10.34	58	50 57
副镜	120	-4	8.00	26	59.57

由优化后的系统数据(见附件)中可得像方数值孔 径约为0.0995,小于一般多模光纤的数值孔径0.22,且 物面光斑大小为8.064×10⁻¹²,远小于多模光纤纤芯直 径。因此经过望远镜接收的光束能够高效率的耦合进多 模光纤中。

通过几何像分析的方法,设置纤芯尺寸与光纤数值 孔径(numerical aperture, NA),得到纤芯直径在8~ 200 μm变化时计算经光纤耦合后系统的接收效率如表3 所示。

由表3可以看出使用非球面镜的卡塞格林系统有较 好的接收效率,实际运用中为尽可能地增加耦合效率还 是选用纤芯直径较大的多模光纤。将副镜与像面的距离 设为变量,并用系统默认优化函数优化可得系统聚焦于 距离主镜面中心约 64.304 mm 处,即为光纤的最佳摆放 位置。

> 表 3 不同光纤芯径时的非球面镜卡塞格林 系统接收效率

 Table 3
 Receiving efficiency of the Cassegrain system

 with aspheric mirrors for different fiber diameters

光纤芯径/μm	8	50	62.5	100	200
接收效率(%)	65.046	74.276	74.825	75.085	75.265

3.2 接收系统整体结构建模

在卡塞格林镜头的初始设计中,使用序列成像即几 何光学的方法,在 Zemax 中可快速优化得到要求的结果, 校正像差。但在对激光雷达整个接收系统仿真时,需使 用物理光线(光线按表面实际光学特性传播),如激光光 源,待测物表面的漫反射等,此时序列模式便不能完成这 种要求,需把设计好的镜头转成非序列镜头分析,加入光 源、漫反射面、探测器等,镜头编辑如表4所示。

表4 接收系统镜头编辑数据图

Table 4 The optimized lens data of receiving system

对象	对象类型	位置/mm	材料	最大孔径/mm
1	光源	0.000	-	1 (Beam Size)
2	矩形表面	- 1000.000	反射面	30.000×20.000
3	标准面	0.000	反射镜	100.000×70.000
4	标准面	-246.270	反射镜	29.000
5	标准面	- 187.000	反射镜	13.000
6	圆筒	- 177.000		30.000
7	圆柱	- 353.819	K5	0.100
8	圆柱	- 353.819	FK3	0.110
9	探测器1	- 353.819		10.000
10	探测器2	- 853.819	吸收	0.100

其中,激光光源设置出射功率为3.50 mW,光束尺寸 为1 mm。漫反射面设置为一个30 mm×20 mm的面, Zemax 中有3 种定义表面散射的类型:1)朗伯散射,即符 合正态统计分布的随机散射;2)高斯散射,即符合高斯曲 线能量分布的散射类型,用参数σ定义散射后光线的集 中或分散程度;3)ABg散射,即用户自定义散射类型,本 文分别采用了朗伯散射和高斯散射进行进一步仿真,并 选择"散射到"的方式进行光线追迹,设置散射到列表为 探测器9、10,以通过忽略那些没有直接朝着期望的物体 传播的被散射光线来加速散射分析。

为了模拟光纤耦合,在系统后方设置了多模光纤,由两个圆柱体(即表4中的对象7、8)进行模拟,纤芯材质 设为K5,直径200 μm,包层设为FK3,直径220 μm,在光 纤入口及出口处都设置了探测器,为避免漫反射光未通 过卡塞格林系统直接被探测器接收,从而造成探测的不 准确,在卡塞格林和探测器外部添加一个挡光的圆形镜 筒,即表4中的对象6。

系统结构如图 3 所示(为了显示清楚,下图暂不包括 设置的圆形套筒)。

3.3 系统优化

评价函数是对一个光学系统如何接近一组指定目标 的数值表示。Zemax 使用一列操作数分别代表系统的不 同约束条件或目标。操作数表示目标例如成像质量、焦 距、放大率等等,优化函数如表5 所示。

表5 优化函数

Table 5 Optimization function							
编号	项目	目标面	目标	权重			
1	NSDD	0	0.000	0.000			
2	NSTR	0	0.000	0.000			
3	BLINK	-	光纤耦合前	-			
4	NSDD	12	3.500×10^{-3}	1.000			
5	BLINK	-	光纤耦合后	-			
6	NSDD	13	3.500×10^{-3}	1.000			
7	BLINK	-	光纤位置	-			
8	NPZG	10	- 600	1.000			
9	NPZL	10	- 280	1.000			

在本系统中选取以下评价函数,第1行 NSDD 的 Det #设为0,表示清空所有探测器;第2行 NSTR 即进行非序 列追迹,Src#设0,将对所有的光源进行追迹,Scat? 非0, 开启散射追踪;第3和第4个 NSDD 分别表示探测器位置表面的光通量,最后的 NPZG 和 NPZL 约束了光纤的大概位置。

经系统优化后,可以得到光纤放置的最佳位置,此时 进行光线追迹,可以得到出入光纤的功率与光纤耦合效 率,为下一步进行系统接收特性的分析做好准备。

4 系统的接收特性分析

4.1 系统接收光功率

4.1.1 朗伯体作为待测目标

朗伯体指的是发光强度的空间分布符合余弦定律的 发光体(不论是自发光或是反射光),其在不同角度的辐 射强度会依余弦公式变化,角度越大强度越弱。朗伯散 射模型常用来描述那些散射较强的面,如毛玻璃、磨砂的 元件表面等。

在仿真中选择样块的表面散射特性为朗伯散射,如 图 3 分别在多模光纤耦合前后设置探测器,通过改变待 测样块的位置,得到不同的接受功率。

按照图 4 所示搭建实验平台进行实验,在实验中使 用了 Spectralon 标准漫反射白板(型号为 SRS - 99-010), 此标准板漫反射率高,可以达到 99%,反射特性接近标 准朗伯散射。在不同的测量距离下得到一组接收光功率 的数据,与上述仿真数据比较如图 5 所示。

图4 实验装置

图 5 接收光功率与待测物位置关系 Fig. 5 The curves of receiving optical power versus target position

由图 5 的结果可以看出当待测物体为朗伯散射时回 波信号较弱,系统的接收功率处于微瓦量级,接收效率不 足 1‰。且随着距离的增加,光纤耦合前的功率是逐渐 减少的,光纤耦合后的功率先增加后减少,耦合效率逐渐 上升。

4.1.2 标准粗糙样块作为待测目标

由于工业测量的目标多为金属表面,其加工方式与 粗糙度各有不同,为方便研究,选用了光华量具生产的具 有确切粗糙度值的标准粗糙度比较样块。

在仿真中需要对待测物体的表面散射特性进行设置,与上述标准漫反射板不同的是样块没有特定已知的 后向散射模型,因此设计实验采用光束分析仪测量样块 后向散射情况并采用模型拟合的方法对样块散射模型进 行仿真。此次实验分别采用了粗糙度为 0.025、0.05 和 0.1 μm 的研磨样块。

利用光束分析仪可以得到光斑的功率分布如图 6 所 示,实线为实际的光斑功率分布,虚线为软件拟合的高斯 曲线,可以看出除少量光斑边缘外,整体光斑功率分布可 近似用高斯曲线进行模拟。

图 6 X 轴光斑分析 Fig. 6 X axis optical spot analysis

先将激光直接入射光束分析仪,得到光斑的初始分 布及其高斯拟合曲线,并可得到曲线的半高宽值,即功率 限制在50%的光束直径,然后测量10组不同距离回波信 号曲线的半高宽值 x_i。由功率坐标高斯曲线图的半高宽 x 可得到对应的散射角值,如式(1)所示。

$$\theta = 2\tan^{-1} \frac{(x_i - x_0)}{2D} \tag{1}$$

式中:D为光束分析仪至样块的距离。由式(1)得到10 组 θ_i 值取平均,得到 θ_{FWHM} 值。

高斯散射的双向散射分布函数(bidirectional scattering distribution function, BSDF)模型表达式为:

$$BSDF(\vec{x}) = Ae^{-|\vec{x}|^2/\sigma^2}$$
(2)

设镜面与散射光向量(均为单位向量)在散射表面 投影分别为 $\vec{\beta}_0$ 和 $\vec{\beta}$,上式中的 \vec{x} 表示 $\vec{\beta}_0 - \vec{\beta}$, A为归一化向 量, σ 值决定了在投影面上高斯分布的宽度。

 σ 与半高宽值 θ_{FWHM} 的关系如下:

$$\sigma = 1.2\sin(\theta_{\rm FWHM}/2) \tag{4}$$

根据上述方法得到粗糙度分别为 0.025、0.05 和 0.1 μm研磨样块的 σ 值分别为 0.000 175、0.000 211 和 0.000 321。在仿真中选择样块的表面散射模型为高斯型,按照上述计算结果设置 σ 值。

实验中从800 mm 开始依次增加待测物的距离,得到 对应的仿真接收功率。仍按图4搭建实验平台,使用粗 糙度为0.025 μm 的样块,得到与仿真数据对比的实验接 收功率如图7所示。

通过上述仿真与实验结果的比较可以看出,接收光 功率实际值与仿真值总体偏低,其中原因可能有多种,如 实验中还有空气损耗,实际样块的后向散射模型比较复 杂,对其的模拟不够精确,而且实验装置的搭建存在一定 的误差等。

由图 7 可以看出,实验和仿真的光功率随样块距离 的变化趋势是基本一致的。对于相同加工方式不同的粗 糙度样块的后向散射接收,仿真和实验也呈现出相同的 规律,具体数据如表 6 所示,即在相同的加工方式下样块 越粗糙,系统接收功率越小,样块距离越远,系统接收功 率也越小,当系统接收的回波信号能量小到不足以进行 后续的测距分析(如远距离下的朗伯体),便会导致测距 的失败,这也直接约束了系统的测距范围。

4.2 激光回波聚焦位置

由光纤耦合的原理可知光纤头摆放的位置对其耦合 效率有很大影响,而在本系统中光纤只有置于卡塞格林 系统聚焦处才能得到最大的耦合效率,因此有必要研究 不同测量条件下系统的聚焦位置。

在 Zemax 中改变样块的散射模型与距离,通过系统 优化得到聚焦位置如图 8 所示。

表6 针对不同粗糙度样块的系统接收功率 P/W(耦合前)

Table 6 System receiving power P/W for the sample blocks with different roughness (before coupling)

距离/mm -	粗糙度为0.1 μm		粗糙度为0.05 μm		粗糙度为0.025 μm	
	仿真	实验	仿真	实验	仿真	实验
800	$1.230 9 \times 10^{-3}$	7.433×10^{-4}	$1.577 4 \times 10^{-3}$	1.072×10^{-3}	$1.862 4 \times 10^{-3}$	1.417×10^{-3}
1 000	$1.041 \ 3 \times 10^{-3}$	6.065×10^{-4}	$1.324 6 \times 10^{-3}$	1.042×10^{-3}	$1.625 \ 1 \times 10^{-3}$	1.403×10^{-3}
1 500	5.850 6 $\times 10^{-4}$	3.978×10^{-4}	1.100 7 × 10 $^{-3}$	1.067×10^{-3}	$1.395 4 \times 10^{-3}$	1.362×10^{-3}
2 000	3.200 0 × 10 $^{-4}$	2.435×10^{-4}	9.241 0 × 10 $^{-4}$	8.320×10^{-4}	1.156 4 $\times 10^{-3}$	1.028×10^{-4}
2 500	1.798 1 \times 10 $^{-4}$	1.155×10^{-4}	8.488 0 × 10 $^{-4}$	8.047×10^{-4}	9.088 0 × 10 $^{-4}$	8.277×10^{-4}

由图 8 可以看出随着待测物距离的增加,聚焦的位置逐渐向平行光入射的情况 313.675 mm 逼近,仿真结果符合理论情况。而对于不同表面散射特性的待测物,其

回波信号聚焦位置不同,表现为表面越粗糙,聚焦距离越 长的规律。

在接收系统的实际应用中,随着反射镜的旋转,待测 物体当漫反射表面可能出现与激光光轴不垂直的情况, 此时返回光的中心轴与激光光轴不重合,即返回光的成 像中心不在光轴上(即轴外点),造成接收光的损失和聚 焦位置的偏移。

而对于待测物表面与光轴不垂直的情况,本文进行 了仿真与实验,主要研究了研磨样块偏移不同距离时系 统的聚焦位置变化。

按图4 搭建实验,设反射镜为45°时激光出射的方向 为参考方向,固定待测物与反射镜沿参考方向的距离 d 为2 000 mm,使其沿垂直参考方向偏移距离 d',改变 d',并旋转反射镜使激光光斑一直保持在待测物的固定 位置,得到卡塞格林系统后端聚焦中心的水平偏移量 p。 仿真中也同样设置,得到聚焦中心水平偏移与待测物偏 移量的关系如图9 所示。

由图9可知,仿真与实验呈现出相似的规律,即聚焦

Fig. 9 The curves of focus center offset versus target position offset

位置的偏移量与待测物偏移量成正比。

根据上述研究表明,对于不同位置的不同待测物,系 统的聚焦位置均不相同,但有着一定的变化规律。为保 证系统的耦合效率,需在光纤前加适合的变焦透镜组,而 上述结果为此部分的继续设计与优化提供了数据支持。

4.3 接收系统的应用

本信号接收系统设计用于连续调频波无合作目标的 测距仪器中,测距系统组成如图 10 所示。

Fig. 10 Ranging system

测距系统主要包括干涉测距系统和收发一体光路,干 涉系统包括测量干涉系统和辅助干涉系统,用于产生测量 拍频信号从而对被测物距离进行解算;而收发一体光路用 于发射准直的调制激光,并通过基于卡塞格林望远镜的接 收系统接收漫反射回波信号,使其进入干涉测量系统。

根据图 10 搭建测量系统,采用研磨样块作为待测目标,通过两个光电探测器得到的波形如图 11 所示。

其中实线波形为辅助干涉光路产生的时钟信号,虚 线为测量信号,即回波接收系统接收的光信号与参考信 号的拍频。通过时钟信号对测量信号进行重采样和快速 傅里叶变换等操作得到拍频信号频率,从而得到待测距 离值。可以看出基本波形比较规则,但将信号放大可以 发现有较多毛刺,因此还应对接收系统后端的光信号进 行进一步的滤波处理。

通过多次测距实验可得知,运用本文设计的回波接 收系统可以得到可靠的回波信号,为进一步数据处理打 下基础,从而初步保证了系统测距功能的实现。

5 结 论

对调频连续波无合作目标测距的回波信号接收系统 进行了设计与分析:基于卡塞格林望远镜结构,设计并搭 建了适用于连续调频波无合作目标测距的回波接收系 统;通过建模仿真、优化系统参数,得到了接近理论最优 的回波接收效率;通过仿真计算与实验结果,定量分析待 测物表面粗糙度及距离对系统接收特性的影响。实验与 仿真的结果显示出较好的一致性,这对接收系统的继续 优化具有积极意义,并为耦合入光纤的回波信号的进一 步处理提供了数据与理论基础。

参考文献

 [1] 曲兴华,戴建芳,张福民.基于激光测距的大尺寸测量应用研究[J]. 仪器仪表学报,2009,30(3): 481-485.

QU X H, DAI J F, ZHANG F M. Application study on laser ranging in large-scale measurement [J]. Chinese Journal of Scientific Instrument, 2009, 30(3) :481-485.

- [2] 黄桂平, 钦桂勤. 大尺寸三坐标测量方法与系统[J]. 宇航计测技术, 2007, 27(4):15-19.
 HUANG G P, QIN G Q. Measurement methods of the large scale 3D coordinate and its system[J]. Journal of Astronautic Metrology & Measurement, 2007, 27(4): 15-19.
- [3] 刘宝,刘军民. FMCW 雷达快速高精度测距算法[J].
 电子测量与仪器学报,2001,15(3):41-45.

LIU B, LIU J M. A method of the realization of high accuracy in FMCW ranging system [J]. Journal of Electronic Measurement and Instrument, 2001, 15(3): 41-45.

 [4] 曾朝阳,张晓永,贾鑫.线性调频连续波激光雷达测量方法研究[J].激光与光电子学进展,2011,48(2): 80-86.

> ZENG ZH Y, ZHANG X Y, JIA X. Measurement of linear frequency-modulated continuous-wave laser radar[J]. Laser & Optoelectronics Progress, 2011, 48(2):80-86.

[5] 安颖, 杜振辉, 刘景旺, 等. 激光自外差相干测量中分 布反馈半导体激光器电流调谐非线性的补偿方 法[J]. 物理学报, 2012, 61(3):034207.
AN Y, DU ZH H, LIU J W, et al. A method to compensate the tuned nonlinearity of DFB diode laser in the laser self-heterodyne coherent measuring system[J].

Acta Physica Sinica, 2012, 61(3):034207.

- [6] KAKUMA S, KATASE Y. Frequency scanning interferometry immune to length drift using a pair of vertical-cavity surface-emitting laser diodes [J]. Optical Review, 2012, 19(6): 376-380.
- [7] 陶会荣,张福民,曲兴华.无合作目标测量中目标表面后向散射特性的实验研究[J].红外与激光工程, 2014,43(增刊1):95-100.

TAO H R, ZHANG F M, QU X H. Experimental study of backscattering signals from rough targets in noncooperative laser measurement system [J]. Infrared and Laser Engineering, 2014, 43 (Suppl. 1):95-100.

- [8] JUTZI B, EBERLE B, STILLA U. Estimation and measurement of backscattered signals from pulsed laser radar [C]. International Symposium on Remote Sensing: International Society for Optics and Photonics, 2003: 256-267
- [9] BAUMANN E, DESCHENES J D, GIORGETTA F R, et al. Speckle phase noise in coherent laser ranging: fundamental precision limitations [J]. Optics letters, 2014, 39(16): 4776-4779.
- [10] FREHLICH RG. Estimation of the Nonlinearity of a Photodetector[J]. Applied Optics, 1992, 31(28): 5926-5929.
- [11] 张玉侠,艾勇.基于空间光通信卡塞格伦天线弊端的 讨论[J].红外与激光工程,2005,34(5):500-563.
 ZHANG Y X, AI Y. Drawback of cassegrain antenna system based on space optical communication [J].
 Infrared and Laser Engineer,2005,34(5):500-563.
- [12] 韩军,李珣,吴玲玲,等. 一种光栅型成像光谱仪光学系统设计[J].应用光学,2012,33(2):233-239.
 HAN J, LI X, WU L L, et al. Optical system design of grating-based imaging spectrometer [J]. Journal of Applied Optics, 2012,33(2):233-239.

- BLAKLEY R D. Cesarian telescope optical system [J].Optical Engineering, 1996,35(1):3338 -3341.
- [14] 王高,周汉昌,李仰军. 锥形光纤耦合特性仿真研究[J]. 仪器仪表学报.2006,27(6):1118-1119.
 WANG G, ZHOU H CH, LI Y J. Simulation research on taper fiber coupler performance [J]. Chinese Journal of Scientific Instrument, 2006,27(6):1118-1119.
- [15] 孟晓辰,祝连庆,刘超,等. 基于 ZEMAX 的流式细胞仪 光束整形系统研究[J]. 仪器仪表学报. 2015,36(7): 1666-1672
 MENG X CH, ZHU L Q, LIU CH, et al. Study on flow cytometry's beam shaping system based on ZEMAX[J]. Chinese Journal of Scientific Instrument, 2015,36(7): 1666-1672.
- [16] SELDOMRIDGE N L. Dual-polarization cloud lidar design and characterization [D]. Bozeman : Montana State University ,2005.
- [17] KOKKALIS P, GEORGOUSSIS G, PAPAYNNIS D, et al. Optimization-through optical design-of a multi-wavelength fiber-based Raman- lidar system in the near field for vertical aerosol measurements in the troposphere[C]. The 8th International Symposium on Tropospheric Profiling, 2009, S06-P01:1-4.
- [18] 屈增风. 光纤激光雷达系统信噪比的性能优化研究[D]. 哈尔滨:哈尔滨工业大学, 2010.
 QU Z F. Study on the snr capability optimization of fiber lidar system [D]. Harbin : Harbin Institute of Technology, 2010.

作者简介

裴冰,2014 年于厦门大学获得学士学 位,现为天津大学硕士研究生,主要研究方 向为测试计量技术及仪器。

E-mail:peibing@tju.edu.cn

Pei Bing received her B. Sc. degree from Xiamen University in 2014. She is currently a

master candidate in Tianjin University. Her research interestis measurement technology and instrument.

张福民(通讯作者),2004 年于哈尔滨 工业大学获得学士学位,2009 年于天津大学 获得博士学位,现为天津大学副教授,主要 研究方向为测试计量技术及仪器。 E-mail;zhangfumin@tju.edu.cn

Zhang Fumin (Corresponding author) received his B. Sc. degree from Harbin

Institute of Technology in 2004 and PH. D. degree from Tianjin University in 2009. He is an associate professor in Tianjin University. His research interest is measurement technology and instrument.