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摘　 要:弓网电弧故障是制约高速铁路与城市轨道交通安全稳定运行的重要隐患之一,其产生的强光、高温及电磁干扰会加剧

接触网部件磨损,缩短运用寿命,并可能诱发供电系统故障,造成重大安全事故。 传统基于可见光的弓网电弧识别易受光照变

化、遮挡及天气条件等环境因素干扰,导致检测精度与鲁棒性不足,难以满足复杂场景下在线监测需求。 为提升检测性能,提出

了一种融合可见光、红外、声信号的多模成像弓网电弧检测方法。 首先,利用麦克风阵列采集的弓网电弧声信号并构建时频矩

阵;随后,引入基于变分推断的噪声抑制策略,抑制环境背景噪声并保留电弧声信息;在此基础上,采用时域波束形成实现声源

成像与能量聚焦,得到声学成像图。 进一步,将声学图像与可见光、热成像数据进行配准与空间对齐,获得电弧形态的多模态图

像表达,并将配准后的图像输入多模态目标检测模型,最终获得弓网电弧位置与置信度信息,完成电弧故障的检测与定位。 为

论证关键环节的有效性,搭建声学传播模型和实验平台,系统分析电弧声源传播规律并验证噪声抑制策略对信噪比与成像性能

的提升作用。 实验结果表明,所提多模成像融合方法,相较单一可见光模态与可见光 / 红外双模态方案,识别精度分别提升

15. 9%与 8. 1% ,能够在多工况干扰环境下保持稳定检测性能,为弓网电弧的在线监测提供技术支撑。
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Abstract:Pantograph-catenary
 

arc
 

faults
 

pose
 

a
 

serious
 

threat
 

to
 

the
 

safe
 

and
 

stable
 

operation
 

of
 

high-speed
 

railway
 

and
 

urban
 

rail
 

transit
 

systems.
 

The
 

intense
 

light,
 

high
 

temperature,
 

and
 

electromagnetic
 

interference
 

generated
 

by
 

these
 

arcs
 

accelerate
 

the
 

wear
 

of
 

catenary
 

components,
 

shorten
 

their
 

service
 

life,
 

and
 

may
 

even
 

trigger
 

power
 

supply
 

system
 

failures,
 

leading
 

to
 

serious
 

safety
 

incidents.
 

Traditional
 

visible-light-based
 

pantograph-catenary
 

arc
 

detection
 

methods
 

are
 

susceptible
 

to
 

environmental
 

interferences
 

such
 

as
 

illumination
 

variations,
 

occlusions,
 

and
 

adverse
 

weather
 

conditions,
 

leading
 

to
 

reduced
 

detection
 

accuracy
 

and
 

robustness
 

and
 

thereby
 

limiting
 

their
 

applicability
 

in
 

complex
 

online
 

monitoring
 

scenarios.
  

This
 

paper
 

proposes
 

a
 

multimodal
 

imaging-based
 

arc
 

detection
 

method
 

that
 

integrates
 

visible,
 

infrared,
 

and
 

acoustic
 

signals
 

to
 

enhance
 

performance
 

in
 

complex
 

scenes.
 

Initially,
 

the
 

acoustic
 

signals
 

of
 

arc
 

are
 

collected
 

by
 

a
 

microphone
 

array
 

and
 

transformed
 

into
 

time-frequency
 

matrices.
 

Subsequently,
 

a
 

variational
 

inference-based
 

noise
 

suppression
 

strategy
 

is
 

introduced
 

to
 

attenuate
 

environmental
 

background
 

noise
 

while
 

preserving
 

arc-related
 

acoustic
 

information.
 

Building
 

on
 

this,
 

time-domain
 

beamforming
 

is
 

employed
 

to
 

achieve
 

acoustic
 

source
 

imaging
 

and
 

energy
 

focusing,
 

yielding
 

acoustic
 

intensity
 

maps.
 

The
 

acoustic
 

images
 

are
 

then
 

registered
 

and
 

spatially
 

aligned
 

with
 

visible
 

and
 

thermal
 

imagery
 

to
 

obtain
 

a
 

multimodal
 

representation
 

of
 

arc
 

morphology.
 

The
 

registered
 

images
 

are
 

then
 

fed
 

into
 

a
 

multimodal
 

object
 

detection
 

model
 

to
 

produce
 

arc
 

locations
 

and
 

confidence
 

scores,
 

thereby
 

completing
 

the
 

detection
 

and
 

localization
 

of
 

the
 

arc
 

fault.
 

To
 

evaluate
 

the
 

proposed
 

method,
 

an
 

acoustic
 

propagation
 

model
 

and
 

an
 

experimental
 

platform
 

have
 

been
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established
 

to
 

analyze
 

the
 

propagation
 

characteristics
 

of
 

arc
 

sources
 

and
 

systematically
 

verify
 

the
 

impact
 

of
 

the
 

noise-suppression
 

strategy
 

on
 

signal-to-noise
 

ratio
 

and
 

imaging
 

performance.
 

The
 

experimental
 

findings
 

demonstrate
 

that,
 

in
 

comparison
 

with
 

single
 

visible-light
 

modality
 

and
 

visible / infrared
 

bimodal
 

schemes,
 

the
 

proposed
 

multimodal
 

imaging
 

fusion
 

method
 

enhances
 

recognition
 

accuracy
 

by
 

15. 9%
 

and
 

8. 1% ,
 

respectively,
 

thus
 

providing
 

an
 

effective
 

solution
 

for
 

robust
 

online
 

detection
 

of
 

pantograph-catenary
 

arcs.
Keywords:pantograph-catenary

 

arc;
 

multimodal
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fusion;
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fault
 

detection

0　 引　 　 言

　 　 截至 2024 年 12 月底,我国铁路营业里程将突破

16. 2 万公里,高速铁路总里程将超过 4. 8 万公里[1] 。 高

速列车运行所需的能量主要通过“接触网-受电弓系统”
(pantograph-catenary

 

system,
 

PCS) 滑动接触系统实现能

量传输,因而,PCS 在维持列车安全、平稳运行中起着至

关重要的作用[2] 。 受流性能是衡量 PCS 系统运行质量

的重要指标,其中,弓网电弧是评估受流质量的核心参量

之一[3] ,电弧会加剧受电弓滑板与接触网导线的磨损,释
放强烈的电磁辐射与干扰信号,严重时甚至可能造成列

车控制系统异常或受电弓烧蚀[4] 。 因此,针对 PCS 系统

中电弧的实时精准检测,对保障电气化铁路的安全与稳

定运行具有重要的现实意义。
目前,针对 PCS 系统的电弧检测技术可归为两类:

接触式检测与非接触式检测。 前者主要依托于电信号参

数的变化来实现识别,包括振荡电流法[5-6] 、电流波形特

征分析法[7-8] 及电阻测量法[9-10] 等;后者则利用多源外部

信号进行监测,如可见光图像检测[11] 、电磁辐射信号检

测[12] 、红外图像检测[13] 、紫外信号检测[14] 以及声学信号

检测[15] 等多种方式。
综合对比,非接触式视觉检测具有实现简便、成本较

低等优势,但视觉检测的好坏依赖于图像质量的高低,如
飞溅等会污染和遮挡视觉传感器[16] ,同时弱光照[17] 、强
光、烟雾及雨雾雪[18] 等在复杂环境中稳定性不足、检测

精度不足所造成的漏检问题值得关注。
值得注意的是,声学检测技术正逐步由传统信号分

析拓展至声学成像领域,并广泛应用于工业噪声监测与

声源定位研究,作为传统视觉检测的补充检测方法适用

性强[19] 。 Chu 等[20] 提出基于模态组合波束成形( modal
 

composition
 

beamforming,
 

MCB) 方法的多旋转声源高分

辨率定位方法,成功实现了轴流风扇叶片噪声源的精准

识别;文献[21]则提出紧凑型麦克风阵列结合高级反卷

积的波束形成算法,实现了大型风力涡轮机的精确噪声

定位。 针对高噪声环境下声信号难以成像的问题,对角

线去除法是声学成像过程中常用的处理手段,削弱非相

关背景噪声的影响[22] 。
结合上述检测方法的各自特点,本研究提出了一种

多模成像融合的弓网电弧检测方法,融合了声学检测、可

见光检测以及红外检测的优势,旨在实现复杂运行环境

下弓网电弧的高精度识别与定位,以降低恶劣环境下弓

网电弧漏检情形。 主要内容包括检测框架设计、多模态

数据采集和处理、检测模型搭建与评估等。

1　 弓网电弧多模态目标检测框架

　 　 多模态传感器融合的弓网电弧检测框架如图 1 所

示,通过光学、热学与声学信息的联合感知与融合识别,
多模态采集装置由可见光相机、热红外相机及麦克风阵

列组成,分别采集光学、热学与声学信号。
弓网电弧多模态目标检测系统安装于列车车顶,其

中,检测系统最重要的部分为多模态数据采集装置,其中

包括采集可见光图片的相机、红外热成像的传感设备以

及电弧声学信号的麦克风阵列。 由于各传感器在成像机

制与数据格式上存在差异,随后需进行多模态数据预处

理:可见光与热红外图像经预训练的语义引导所有过程

的网络模型(semantics
 

to
 

lead
 

all,
 

SemLA) [23] 进行像素级

配准,确保空间一致性;麦克风阵列数据经声学信号处理

转化为声成像图像。
在目标识别阶段,检测系统构建了基于 transformer

端到端的目标检测架构(detection
 

transformer,
 

DETR) [24]

的多模态目标检测模型,包括 50 层残差神经网络( 50
 

layer
 

residual
 

neural
 

network,
 

ResNet-50)、高效混合编码

器、 Top-K 模 态 选 择 模 块 ( Top-K
 

Modality
 

Selection
 

module,
 

TKMS)及多模态可变形交叉注意力机制。 该模

型通过多尺度特征提取与跨模态关联建模,以增强电弧

特征的表征能力。
1. 1　 可见光和红外图像处理

　 　 由于可见光与热红外相机在分辨率、视角及成像角

度上的差异,同一目标在两幅图像中的空间映射常存在

偏移。 本文采用基于深度学习的预训练配准模型

SemLA,实现可见光与热成像图像的自动化空间对齐。
首先,利用轻量级网络提取两类图像的注册与语义

感知特征; 随后, 通过跨模态语义校准 ( cross-modal
 

semantic
 

calibration,
 

CSC)模块自适应调整红外图像的语

义特征,并生成重新校准的红外语义图;再由语义结构表

示(semantic
 

structure
 

representation,
 

SSR) 模块聚合两类

语义图在不同空间位置的概率分布;最后,语义引导特征

匹配(semantic-guided
 

feature
 

matching,
 

SFM)模块对可见
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图 1　 弓网电弧多模态目标检测系统框架设计

Fig. 1　 Framework
 

of
 

multi-modal
 

target
 

detection
 

system
 

using
 

pantograph-catenary
 

arc

光特征、热成像特征及红外语义图进行精确匹配,从而得

到空间对齐的红外图像。
1. 2　 声学数据处理

　 　 检测系统声学数据处理流程,如图 2 所示。 该流程

主要包括声学矩阵表达、噪声抑制与信号分离以及声学

成像 3 个阶段。
第 1 阶段是声学矩阵表达。 声学信号的传播可视为

一个或多个辐射源在空间中产生的声场,并通过麦克风

阵列在不同位置进行接收与观测。 假设声场由一个辐射

源在声源位置 x 处产生,麦克风阵列在若干离散位置

y i( i = 1,2,…,M) 进行测量,则阵列第 i 个通道在频率

f 下接收到的声压信号如式(1)所示。

p(y i,f) = ∫
Sx

s(x,f)G(y i,f x)dSx + e (1)

其中, Sx 表示声源表面,y i 表示第 i 个麦克风位置,
x 是声源位置,e表示测量噪声,s(x,f) 表示声源 x的频域

辐射强度。
利用该声学传播特性进行对采集的多通道声压信号

进行处理,如图 2 中的声学矩阵表达流程所示,第 m 通道

的信号时域声压信号被分成 N 个快照(M<N)。 其中每个

快照的长度相等,相邻快照之间有重叠部分,从而获得更

多快照。 接着添加汉明窗,对每个快照进行傅里叶变换,
将需要分析的频率的复数值保留在矩阵中。 从而求得如

式(1)中的复数值 p(yi,f), 再将 N 个快照的复数值拼接

为一个行向量,再将 M 个麦克风阵列通道的行向量拼接成

一列,最后形成时频矩阵 Ptf ∈ CM×N, 如式(2)所示。
P tf = L tf + E tf (2)
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图 2　 声学信号处理过程

Fig. 2　 Acoustic
 

signal
 

processing
 

procedure

　 　 其中, P tf ∈ CM×N 表示为激励频率 f 的测量声压矩

阵,L tf ∈ CM×N 表示为声源信号矩阵,E tf ∈ CM×N 表示为背

景噪声干扰矩阵。
第 2 阶段是噪声抑制与分离。 在获取频域观测矩阵

P tf 后,需要从中有效分离出真实的声源成分。 由于声学

测量过程中普遍存在复杂的背景噪声和非平稳干扰,传
统的单分布噪声模型往往无法准确拟合观测数据。 为

此,本研究采用高斯混合模型对背景噪声矩阵 E tf 进行统

计建模,从而提升信号去噪的精度与鲁棒性。
为了获得参数的最优估计,本研究采用变分贝叶斯

推断方法,通过最小化 KL 散度实现对后验分布的近似。
因此根据平均场理论重写为因式分解形式以促进求解,
如式(3)所示。

Q(θ) = q(U)q(V)q(γ)q(Z)q(μ)q(τ)q(π) (3)
μ k,τk 的变分后验形式如式(4)所示。
q∗(μ k,τk) = NC(μ k mk,(β kτk)

-1) ×
Gam(τk ck,dk) (4)

π 的变分后验形式如式(5)所示。
q∗(π) = Dir(π α) (5)
由于真实声源信号矩阵 L tf ∈ CM×N 具有显著的低秩

特性,因此 L tf 可以表示为U ∈ CM×N 和V ∈ CM×N 的乘积,
表达公式如式(6) 所示。

L tf = UVH = ∑
R

n = 1
u·nv

H
·n,　 R ≤ M (6)

其中, U∈ CM×N 和V∈ CM×N 分别为左右奇异向量矩

阵,R > r,u·n 为U的第 n列,v·n 是V的第 n列。进一步地,
u i· 与 v i· 的后验分布可以近似如式(7)、(8) 所示。

q∗(u i) = NC(u i . μ ui.
,􀰑ui

) (7)

q∗(v j·) = NC(v j· μ v j·
,􀰑v j·

) (8)
γr 的变分后验形式如式(9)所示。
q∗(γr) = Gam(γr ar,br) (9)
模型通过迭代优化对 U、V 的后验参数,当满足如

式(10)所示的收敛条件时停止迭代,即:
 

‖L tf -new - L tf -old‖F < σ (10)
第 3 阶段是声学成像。 在获得去噪后的声源信号矩

阵后,将探测的平面区域划分成网格,指定某一频率通过

波束形成算法扫描每个网格点并计算出网格点上的声功

率。 以阵列的中心点为原点建立三维笛卡尔坐标系,麦
克风分布在原点的 x-y 平面上。 假设扫描平面与阵列的

距离为 z,然后将扫描区域划分为 w×h 个网格,扫描平面

一共有(w+1) ×(h+1)个网格点。 通过对每个通道麦克

风进行延时补偿接收过程中产生的时间差,使得各个通

道的声信号同步,然后再经过加权求和输出最大值。 跨

谱矩阵( cross
 

spectral
 

matrix,
 

CSM) [25] 的引入使得波束

形成求解更加方便灵活。 基于 CSM 进行波束形成,去噪

后的时频矩阵 L tf 的由傅里叶系数的协方差矩阵定义,并
通过对 n 快照进行平均估算,具体计算如式(11)所示。

ŜLtfLtf
= 1

n ∑
n

j = 1
L tf·j

LH
tf·j

,　 j = 1,…,n (11)
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其中,H 是 Hermitian 转置算子, ŜLtfLtf
表示为估计量,

L tf·j
表示 L tf 矩阵的第 j 列。波束形成计算如式(12)所示。

bwh = wH
wh ŜLtfLtf

wwh (12)
其中, bwh 表示扫描的第 w 行 h 列点网格输出的声源

功率; wwh 表示为权重矢量。

2　 电弧声信号特性分析

2. 1　 声信号模型搭建

　 　 采用有限元方法分析弓网系统中声学信号的传播规律,
如图 3 所示。 图 3(a)中麦克风阵列距离受电弓电弧声源点

为 2 m,均匀阵列中心与坐标原点重合,扫描平面是一个 2 m
的正方形平面,分为900 个0. 06

 

m 大小的网格点。 每个网格

点代表一个等效源,声平面与麦克风阵列平面平行。 有限元

模型如图 3(b)所示,左边点为模拟麦克风阵列的信号采集

点,麦克风阵列形状为均匀阵列,直径大小为 0. 8 m。 用单极

子源模拟弓网处的电弧声信号 y(t), 如式(13)所示。
y( t) = 4 × exp( - 5 × ( t - 2T0) 2 / (T0 / 2)) ×

sin(2 × π × f0 × ( t - 2 × T0)) (13)
其中,声源中心频率 f0 为 700

 

Hz, T0 表示中心频率

的信号周期,t 为时间。
随着声信号从模拟弓网电弧声源点向外传播,由麦克

风阵列的接收测量声压。 其中,利用简化的局部反应近似

模型来模拟受电弓滑板、受电弓和车顶的边界声反射。

图 3　 声信号模型示意图

Fig. 3　 The
 

illstration
 

of
 

the
 

acoustic
 

signal
 

model

2. 2　 模型结果分析

　 　 图 4 为模拟弓网电弧声源点到阵列采集点之间的三

维平面声场能量图。 图 4( a)、( b)和( c) 分别对应时间

为 1. 43、14. 57 和 25. 74 ms。

图 4　 声源点到阵列采集点之间的三维声场能量图

Fig. 4　 Three-dimensional
 

sound
 

field
 

energy
 

map
 

from
 

the
 

sound
 

source
 

point
 

to
 

the
 

array
 

measurement
 

point
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　 　 通过图 3(b)的声信号模型,所设计的麦克风阵列能

够得到 25 个通道的声学时域信号,由于电弧声在传播过

程中产生的时间差,而波束成形理论也是根据这一特性

进行声源定位。 以图 3( b)中的 M1、M2、M3、M4 和 M5 这

5 个采集点时域信号为例,各采集点存在一定的时间差

以及峰值差,如图 5 所示。
随后,基于采集的声信号,本文基于去噪模型以及声

学成像的算法验证。 如图 6 所示。
图 6(a)为模型采集信号(未施加噪声)计算的 CSM

能量图,图 6(b)为使用该信号进行波束成形的图像。 通

过施加随机噪声、高斯噪声和拉普拉斯噪声,使得加噪后

信号的信噪比为 - 5
 

dB, 具体的结果 CSM 能量图如

图 7(a)所示。 可以看出噪声污染后的 CSM 矩阵的能量

进行提升,同时矩阵内的特征点也逐渐被覆盖,声源信息

被污染。 通过第 2 阶段中的噪声抑制与分离方法处理

后,如图 7( b) 所示,未受污染 CSM 的特征信息得以保

留,重建 CSM 的振幅复现度高。

图 5　 模型产生的部分声学信号

Fig. 5　 Acoustic
 

signals
 

generated
 

by
 

the
 

model

图 6　 未加噪信号的 CSM 能量图像与波束成形图像

Fig. 6　 CSM
 

and
 

beamforming
 

image
 

without
 

adding
 

noise
 

signal

图 7　 -5
 

dB 背景噪声环境下 CSM 能量图对比

Fig. 7　 CSM
 

energy
 

map
 

under
 

a
 

-5
 

dB
 

background-noise
 

condition
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　 　 随着加噪程度不断加强,施加噪声后信号信噪比达

到了-27
 

dB,此时噪声污染后的 CSM 的能量出现大幅度

提升,如图 8( a) 所示。 通过噪声抑制与分离方法处理

后,如图 8( b) 所示,特征信息被重建,重建后幅值复原

度高。

为了更加直观地展示噪声抑制与分离方法的效果,
将原始信号、加噪信号( -27

 

dB)和去噪信号的 CSM 进行

了波束成形,如图 9 所示。 可看出图 9( b)和 6( b)中的

波束成形图像保持一致,如对加噪后的波束成形进行成

像,如图 9(a)所示,则无法分辨出声源的区域。

图 8　 -27
 

dB 背景噪声环境下 CSM 能量图对比

Fig. 8　 CSM
 

energy
 

map
 

under
 

a
 

-27
 

dB
 

background-noise
 

condition

图 9　 -27
 

dB 背景噪声环境下的波束成形图

Fig. 9　 Beamforming
 

map
 

under
 

a
 

-27
 

dB
 

background-noise
 

condition

　 　 通过仿真模型验证了,采取了 CSM 能量图和波束成

形的方式能够进行算法的可视化,噪声抑制与分离算法

能够在极低信噪比的条件下进行稳定去噪,而且去噪前

后效果基本保持一致。

3　 实验验证与分析

3. 1　 实验平台搭建及数据集构建

　 　 实验装置与参数设置如表 1 所示。 为实现高精度多

模态数据采集,实验将扫描平面划分为 900 个网格,网格

尺寸随阵列与声源距离自适应调整,以便实现声学与视

觉信号的空间对齐。 受电弓碳滑板上安装尺寸为

65 mm×40 mm×25 mm 的电弧激发装置,用于模拟电弧放

电行为,设置 5 个采样点以获取不同空间位置下的电弧

信号特征。 每次实验连续采集 5 s 数据,在 1、1. 5、2 m 这

3 种不同距离获得 15 组多模态数据。
经时间同步与几何校准后,使用 Albumentations 工具

进行数据增强,每组扩充 200 张,最终形成约 3
 

000 组
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　 　 　 　 表 1　 多模态弓网电弧数据采集的实验装置

Table
 

1　 Experimental
 

setup
 

for
 

multimodal
 

pantograph
 

catenary
 

arc
 

data
 

acquisition

麦克风阵列排布 实验设备布局 实验参数设置

可见光分辨率 1
 

920
 

pixels×1
 

080
 

pixels

热红外分辨率 160
 

pixels×120
  

pixels

声源-阵列距离 1、1. 5、2
 

m

信号采样频率 192
 

kHz

采集电弧位置 5

多模态样本。 数据集按 8 ∶ 2比例划分为训练集与验证

集,以保证模型的泛化能力。 为训练检测模型,对 RGB
图像中的电弧区域采用 LabelImg 进行人工标注,生成

COCO 格式标注文件。
3. 2　 声学去噪结果对比

　 　 图 10 展示了实验室条件下获取的电弧阵列信号声

学成像结果。 成像频率设为 20
 

kHz。 声源位于受电弓滑

板右侧,由电弧激发装置产生,对实验信号加噪声后进行

去噪,可看出 3 组不同距离下声成像图。
进一步分析,当成像距离为 1 m 时,成像效果最佳,

声源聚焦清晰;当距离增加至 1. 5 和 2 m 时,图像中出现

伪声源区域。 这种现象主要原因是麦克风阵列与受电弓

距离较远,产生了声波反射,因此产生了伪声源干扰。
为验证声源定位的准确性,本文将波束成形图与可

见光图像进行融合,实现声源位置的可视化对比。 如

图 11 所示。

图 10　 不同距离下实验信号的波束成形可视化

Fig. 10　 Beamforming
 

visualization
 

of
 

experimental
 

signals
 

at
 

different
 

distances.

图 11　 不同距离下实验信号的波束成形可视化

Fig. 11　 Beamforming
 

visualization
 

of
 

experimental
 

signals
 

at
 

different
 

distances.
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　 　 展示了成像距离为 1、1. 5 和 2 m 时的融合结果。 通

过提取波束成形声源区域特征,以透明化方式叠加至可

见光图像,两者在空间位置上一致,声源定位点与实际电

弧位置精确重合,验证了所提定位方法的可靠性与精度。
3. 3　 多模态模型性能对比

　 　 以 mAP
 

(mean
 

average
 

precision)作为主要精度指标。
基于自建的单类目标(电弧)多模态图像数据集,在服务器

端分别训练和测试单模态、双模态及三模态模型,比较不

同模态融合方式的检测性能。 训练配置如表 2 所示。

表 2　 计算机资源配置

Table
 

2　 The
 

computer
 

resource
 

configuration

计算机资源 型号

CPU Inter
 

Core
 

i7-14700K

GPU NVIDIA
 

RTX
 

4090D

GPU 数量 1

Memory 128
 

G

API PaddleDetection

　 　 优化器采用解耦权重衰减改进的 Adam 优化器

(adam
 

with
 

decoupled
 

weight
 

decay,
 

AdamW),权重衰减系

数与初始学习率均设为 10-4,并使用线性学习率热身策略

以避免初期不稳定。 训练共 50 个轮次,批量大小为 4。
基于该数据集,本文对所提方法进行评估,并与单模

态(VIS、TIR)、双模态(RGT、RGBT、GBT)及三模态(RTC、
GTC、BTC)模型进行对比。 所有模型均在相同的数据集与

超参数下,基于 DETR 检测框架训练双模态 RGT 模型输入

为可见光 R、G 通道与热成像 T 通道;三模态 RTC 模型输

入为可见光 R 通道、热成像 T 通道及声成像 C 通道;RGBT
模型输入为 3 通道可见光与 3 通道热成像。

表 3 结果所示,多模态模型在各阈值下的检测精度

均显著优于单模态与双模态模型。 所提三模态方法的

mAP@ 0. 5、mAP @ 0. 75 及 mAP @ 0. 5 ∶ 0. 95 分别达到

97. 8% 、93. 5%和 84% 。 相较于单模态可见光与热红外

模型,mAP@ 0. 5 ∶ 0. 95 分别提升 15. 9% 与 20. 8% ,较双

模态 RGBT 模型提升 8. 1% 。 这表明多模态融合能够充

分发挥不同信息源的互补优势,显著提高电弧检测的精

度与鲁棒性。 可见光模型易受光照与环境干扰,热红外

模型则受遮挡和噪声影响,而多模态方法通过融合光学、
热成像与声学特征,有效克服单一模态的局限。

表 3　 模型的准确度评估对比

Table
 

3　 The
 

comparison
 

of
 

accuracy
 

检测模态 模型
模态

R G B T CBF
骨干网络

mAP

0. 5 ∶ 0. 95 / % 0. 75 / % 0. 5 / %

单模态

双模态

三模态

VIS √ √ √ Resnet50 68. 1 74. 6 91. 4

TIR √ Resnet50 63. 2 65. 1 95. 2

RGT √ √ √ Resnet50 70. 2 79. 3 96. 1

RBT √ √ √ Resnet50 70. 7 79. 6 96. 1

GBT √ √ √ Resnet50 69. 4 78. 5 95. 7

RGBT √ √ √ √ Resnet50 75. 9 87. 6 96. 9

RTC √ √ √ Resnet50 72. 1 82. 4 96. 9

GTC √ √ √ Resnet50 73. 2 84. 5 96. 9

BTC √ √ √ Resnet50 73. 6 83. 4 96. 6

本文 √ √ √ √ √ Resnet50 84. 0 93. 5 97. 8

　 　 在双模态模型的比较中,RGBT 模型相较于 RGT、
RBT 和 GBT 等 传 统 通 道 融 合 模 型 表 现 更 优, 其

mAP@ 0. 5 ∶ 0. 95、mAP @ 0. 75 和 mAP @ 0. 5 分别提升

5. 2% 、8. 0%和 0. 8% 。 结果表明,RGBT 模型通过融合可

见光 R、G、B 通道与热成像 T 通道,能更有效提取和整合

多模态特征,从而提升电弧检测精度。 相比之下,传统通

道融合模型未能充分挖掘各模态特征潜力,在复杂背景

噪声、反射光和遮挡条件下表现较弱。

在三模态模型中,由于引入声成像模态,检测性能进

一步提升。 与 RTC、GTC 和 BTC 模型相比,所提模型在

mAP@ 0. 5 ∶ 0. 95、mAP@ 0. 75 和 mAP@ 0. 5 上分别提高

10. 4% 、9. 0%和 0. 9% 。 这一结果表明,声学信息的加入

显著增强了模型对环境干扰的抵抗力,改善了特征融合

效果。
综上,三模态模型在检测精度与鲁棒性方面均优于

单模态和双模态方法。 多模态融合策略有效整合可见
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光、热红外及声学特征,显著提升了电弧检测的准确性与

稳定性。
3. 4　 实验结果对比

　 　 如图 12 所示,为验证模型在不同环境条件下的检测

性能,对验证集样本进行了可视化分析。 可视化时置信

度阈值设为 0. 85,红框实线表示模型预测结果,绿框虚

线为人工标注。 图 12 中展示了单模态、双模态与三模态

模型在多种典型工况下的检测表现。

图 12　 不同环境下目标检测实验结果

Fig. 12　 Experimental
 

results
 

of
 

object
 

detection
 

in
 

various
 

environments.

　 　 在标准工况中,如图 12(a)所示,可见光与热红外摄

像机均正常工作,三模态模型在声成像信息辅助下的检

测置信度较双模态模型提升约 1% ,说明声学特征可增强

电弧特征稳定性与辨识度。 在热红外受强噪声干扰的场

景中,如图 12( b)所示,单一热红外模型未能识别电弧,
而三模态模型的检测置信度较双模态模型提升约 3% ,表

明跨模态融合能显著提升抗干扰能力。 在低光照度条件

中,如图 12(c)所示,可见光模态失效,三模态模型的检

测置信度达 95% ,略高于热红外单模态,验证了声学模态

在弱信号场景中的增强作用。 在极端环境中, 如图

12(d)所示,可见光与热红外均受污染或遮挡,单模态检

测失败,双模态置信度仅 85% ,而三模态模型仍能准确识
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别电弧,置信度达 95% 。 结果表明,三模态模型在多源信

息互补下具备显著的鲁棒性与稳定性。
综上所述,三模态模型在多种复杂环境与传感器故

障情境下均表现出优异的检测性能,电弧检测置信度始

终保持在 90%以上,定位精度高且误检率低。

4　 结　 　 论

　 　 针对单一模态数据在列车运行环境复杂多变条件下

难以实现高精度弓网电弧检测的问题,本研究首次提出

基于多模态融合的弓网电弧检测方法。 研究的主要创新

点在于:利用声学成像算法实现对弓网电弧声源的空间

定位与成像,并设计了基于变分推断的声学阵列去噪流

程,有效解决了列车运行环境中高噪声干扰对检测精度

的影响。 在声学传播特性方面,本文构建了弓网电弧声

场仿真模型,对声波传播规律进行了系统分析,并通过仿

真信号验证了声学成像算法在高噪声加载条件下的稳定

去噪与成像能力。 实验结果表明,所提出的多模态检测算

法在实验室环境下能够实现对模拟弓网电弧的高精度定

位与有效识别,具有良好的可扩展性与工程应用前景,可
为弓网系统运行状态监测及故障诊断提供技术强力支撑。
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